Type II Heterostructures: The Way Towards Improved Photoelectrochemical Activity of Graphitic Carbon Nitride



Photoelectrochemical (PEC) water splitting is promising approach of solar energy conversion. Graphitic carbon nitride can be given as an example of metal-free and cheap semiconducting material for photoelectrochemical reactions however its activity is very low, probably due to high rate of unfavorable charge carriers recombination. Type II heterostructure, graphitic carbon nitride–copper oxide (g-C3N4 and CuO), showed improved photoelectrochemical activity in comparison with neat g-C3N4. Visible-light irradiated composite generates cathodic photocurrents under middle bias and therefore it can be used as a photocathode for water splitting with hydrogen formation. The band bending existing in type II heterostructures drives the photogenerated electrons and holes to move in opposite directions, resulting in a spatial separation of the photogenerated charge carriers on different sides of heterojunction. Lower recombination rate and higher activity are the overall effects. Moreover, by using copper based underlayer (metallic copper) or overlayer (copper iodide) the PEC activity grows. In particular CuI@g-C3N4_CuO showed the highest photocurrent density and the “relax time” in dark conditions has an noticeable influence on the further increase in activity.


g-C3N4 Inorganic composites Photocathode PEC water splitting Copper oxides 



This research was supported by National Science Centre, Poland—Project SONATA 2016/21/D/ST4/00221.


  1. 1.
    M. Aresta, A. Dibenedetto, E. Quaranta, J. Catal. 343, 2 (2016)CrossRefGoogle Scholar
  2. 2.
    R. Li, Chin. J. Catal. 38, 5 (2017)CrossRefGoogle Scholar
  3. 3.
    T. Baran, S. Wojtyła, A. Dibenedetto, M. Aresta, W. Macyk, Appl. Catal. B 178, 170 (2015)CrossRefGoogle Scholar
  4. 4.
    F. Malara, S. Carallo, E. Rotunno, L. Lazzarini, E. Piperopoulos, C. Milone, A. Naldoni, ACS Catal. 7, 4786 (2017)CrossRefGoogle Scholar
  5. 5.
    T. Baran, S. Wojtyła, C. Lenardi, A. Vertova, P. Ghigna, E. Achilli, M. Fracchia, S. Rondinini, A. Minguzzi, ACS Appl. Mater. Interfaces 8, 21250 (2016)CrossRefGoogle Scholar
  6. 6.
    U. Shaislamov, H.-J. Lee, J. Korean Phys. Soc. 69, 1242 (2016)CrossRefGoogle Scholar
  7. 7.
    A.A. Dubale, A.G. Tamirat, H.-M. Chen, T.A. Berhe, C.-J. Pan, W.-N. Su, B.-J. Hwang, J. Mater. Chem. A 4, 2205 (2016)CrossRefGoogle Scholar
  8. 8.
    S. Wojtyła, T. Baran, J. Inorg. Organomet. Polym. Mater. 27, 436 (2017)CrossRefGoogle Scholar
  9. 9.
    Y. Yang, D. Xu, Q. Wu, P. Diao, Sci. Rep. 6, srep35158 (2016)CrossRefGoogle Scholar
  10. 10.
    J.S. Kim, J.W. Oh, S.I. Woo, Catal. Today 293, 8 (2017)CrossRefGoogle Scholar
  11. 11.
    M. Shao, Y. Shao, J. Chai, Y. Qu, M. Yang, Z. Wang, M. Yang, W.F. Ip, C.T. Kwok, X. Shi, Z. Lu, S. Wang, X. Wang, H. Pan, J. Mater. Chem. A 5, 16748 (2017)CrossRefGoogle Scholar
  12. 12.
    S. Martha, A. Nashim, K.M. Parida, J. Mater. Chem. A 1, 7816 (2013)CrossRefGoogle Scholar
  13. 13.
    J. Qin, J. Huo, P. Zhang, J. Zeng, T. Wang, H. Zeng, Nanoscale 8, 2249 (2016)CrossRefGoogle Scholar
  14. 14.
    A. Wang, C. Wang, L. Fu, W. Wong-Ng, Y. Lan, Nano-Micro Lett. 9, 47 (2017)CrossRefGoogle Scholar
  15. 15.
    L. Ye, S. Chen, Appl. Surf. Sci. 389, 1076 (2016)CrossRefGoogle Scholar
  16. 16.
    G. Dong, Y. Zhang, Q. Pan, J. Qiu, J. Photochem. Photobiol. C 20, 33 (2014)CrossRefGoogle Scholar
  17. 17.
    F. Yang, M. Lublow, S. Orthmann, C. Merschjann, T. Tyborski, M. Rusu, S. Kubala, A. Thomas, R. Arrigo, M. Hävecker, T. Schedel-Niedrig, ChemSusChem 5, 1227 (2012)CrossRefGoogle Scholar
  18. 18.
    Y. Dong, Y. Chen, P. Jiang, G. Wang, X. Wu, R. Wu, RSC Adv. 6, 7465 (2016)CrossRefGoogle Scholar
  19. 19.
    T. Baran, S. Wojtyła, A. Dibenedetto, M. Aresta, W. Macyk, ChemSusChem 9, 2933 (2016)CrossRefGoogle Scholar
  20. 20.
    A. Paracchino, V. Laporte, K. Sivula, M. Grätzel, E. Thimsen, Nat. Mater. 10, 456 (2011)CrossRefGoogle Scholar
  21. 21.
    S. Kakuta, T. Abe, Electrochem. Solid-State Lett. 12, P1 (2009)CrossRefGoogle Scholar
  22. 22.
    Y. Zhang, T. Mori, L. Niu, J. Ye, Energy Environ. Sci. 4, 4517 (2011)CrossRefGoogle Scholar
  23. 23.
    M.S. Prévot, X.A. Jeanbourquin, W.S. Bourée, F. Abdi, D. Friedrich, R. van de Krol, N. Guijarro, F. Le Formal, K. Sivula, Chem. Mater. 29, 4952 (2017)CrossRefGoogle Scholar
  24. 24.
    S.P. Berglund, F.F. Abdi, P. Bogdanoff, A. Chemseddine, D. Friedrich, R. van de Krol, Chem. Mater. 28, 4231 (2016)CrossRefGoogle Scholar
  25. 25.
    X. Guo, P. Diao, D. Xu, S. Huang, Y. Yang, T. Jin, Q. Wu, M. Xiang, M. Zhang, Int. J. Hydrog. Energy 39, 7686 (2014)CrossRefGoogle Scholar
  26. 26.
    Y. Shen, X. Guo, X. Bo, Y. Wang, X. Guo, M. Xie, X. Guo, Appl. Surf. Sci. 396, 933 (2017)CrossRefGoogle Scholar
  27. 27.
    Y. Wang, Q. Wang, X. Zhan, F. Wang, M. Safdar, J. He, Nanoscale 5, 8326 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.SajTom Light FutureSłomnikiPoland
  2. 2.BRWP - Polish Armed ForcesWarszawaPoland

Personalised recommendations