Synthesis and Photocatalytic Performance of Bi12O17Cl2 Semiconductors Calcined at Different Temperatures

  • Feiyan Wu
  • Fei Chang
  • Jiaojiao Zheng
  • Mingzhi Jiao
  • Baoqing Deng
  • Xuefeng Hu
  • Xiaoqi Liu


In the current investigation a series of oxygen-rich bismuth oxychloride Bi12O17Cl2 samples through an ethylene glycol-solvothermal route were constructed at different calcination temperatures and fully characterized by X-ray diffraction patterns, scanning electron microscopy, Fourier transformed infrared spectroscopy, X-ray photoelectron spectroscopy, UV–Vis diffuse reflectance spectra, X-ray energy dispersion spectroscopy, and photoluminescence spectra. It was demonstrated that the calcination temperatures indeed had a crucial effect on the crystallinity, grain size, morphology, optical property, and charge carrier separation of Bi12O17Cl2 series. These Bi12O17Cl2 samples showed significantly improved photocatalytic degradation over dye Rhodamine B and colorless antibiotic tetracycline hydrochloride. Particularly, the best candidate, the sample 350 °C—Bi12O17Cl2 could show apparent reaction rate constants that were nearly 28.2, 1.2 times of N–TiO2 over Rhodamine B and tetracycline hydrochloride, respectively. The possible reason of enhancing photocatalytic performance by various Bi12O17Cl2 samples calcined at different temperatures was discussed and major oxidative radicals maybe generated during photocatalytic processes were detected.


Bi12O17Cl2 Calcination temperatures Photocatalysis Rhodamine B Tetracycline hydrochloride 



Authors appreciate the financial support from the National Natural Science Foundation of China (No. 21207089), the project-sponsored by SRF for ROCS, SEM., the Natural Science Foundation of Shanghai (No. 17ZR1419200), and science and technology development project of University of Shanghai for Science and Technology (No. 2017KJFZ073).

Supplementary material

10904_2017_731_MOESM1_ESM.docx (263 kb)
Supplementary Figure S1 The curve of ln(αhυ) versus ln(hυ-Eg) by using sample 350 °C-Bi12O17Cl2 (DOCX 262 KB)


  1. 1.
    X. Zhang, S. Li, L. Su., H. Cheng, J. Ding, Univ. Shanghai Sci. Technol. 38, 335 (2016)Google Scholar
  2. 2.
    A. Hernández-Gordillo, J.C. Medina, M. Bizarro, R. Zanella, B.M. Monroy, S.E. Rodil, Ceram. Int. 42, 11866 (2016)CrossRefGoogle Scholar
  3. 3.
    Y. Zheng, Z. Pan, X. Wang, Chin. J. Catal. 34, 524 (2013)CrossRefGoogle Scholar
  4. 4.
    K. Nakata, A. Fujishima, J. Photochem. Photobiol. C 13, 169 (2012)CrossRefGoogle Scholar
  5. 5.
    Y. Hong, S. Wang, L. Li, B. Xu, G. Han, Univ. Shanghai Sci. Technol. 32, 159 (2010)Google Scholar
  6. 6.
    H. Cheng, B. Huang, Y. Dai, Nanoscale 6, 2009 (2014)CrossRefGoogle Scholar
  7. 7.
    M. Kwiatkowski, R. Chassagnon, O. Heintz, N. Geoffroy, M. Skompska, I. Bezverkhyy, Appl. Catal. B 204, 200 (2017)CrossRefGoogle Scholar
  8. 8.
    B.A. Marinho, R.O. Cristóvão, R. Djellabi, J.M. Loureiro, R.A.R. Boaventura, V.J.P. Vilar, Appl. Catal. B 203, 18 (2017)CrossRefGoogle Scholar
  9. 9.
    S. Wojtyła, W. Macyk, T. Baran, Photochem. Photobiol. Sci. 16, 1079 (2017)CrossRefGoogle Scholar
  10. 10.
    T. Baran, W. Macyk, J. Photochem. Photobiol. A 241, 8 (2012)CrossRefGoogle Scholar
  11. 11.
    Q. Zhao, X. Liu, Y. Xing, Z. Liu, C. Du, J. Mater. Sci. 52, 2117 (2016)CrossRefGoogle Scholar
  12. 12.
    F. Chang, J. Luo, X. Wang, Y. Xie, B. Deng, X. Hu, J. Colloid Int. Sci. 459, 136 (2015)CrossRefGoogle Scholar
  13. 13.
    F. Chang, X. Wang, J. Luo, J. Wang, Y. Xie, B. Deng, X. Hu, J. Mol. Catal. A 427, 45 (2016)CrossRefGoogle Scholar
  14. 14.
    X. Zhang, L. Zhao, C. Fan, Z. Liang, P. Han, Phys. B 407, 4416 (2012)CrossRefGoogle Scholar
  15. 15.
    F. Chen, H. Liu, S. Bagwasi, X. Shen, J. Zhang, J. Photochem. Photobiol. A 215, 76 (2010)CrossRefGoogle Scholar
  16. 16.
    C.Y. Wang, X. Zhang, H.B. Qiu, W.K. Wang, G.X. Huang, J. Jiang, H.Q. Yu, Appl. Catal. B 200, 659 (2017)CrossRefGoogle Scholar
  17. 17.
    X. Liu, Y. Su, Q. Zhao, C. Du, Z. Liu, Sci. Rep. 6, 28689 (2016)CrossRefGoogle Scholar
  18. 18.
    J. Li, L. Zhang, Y. Li, Y. Yu, Nanoscale 6, 167 (2013)CrossRefGoogle Scholar
  19. 19.
    C. Bi, J. Cao, H. Lina, Y. Wang, S. Chen, Appl. Catal. B 195, 132 (2016)CrossRefGoogle Scholar
  20. 20.
    G. He, C. Xing, X. Xiao, R. Hu, X. Zuo, J. Nan, Appl. Catal. B, 170–171, 1 (2015)Google Scholar
  21. 21.
    H. Huang, K. Xiao, Y. He, T. Zhang, F. Dong, X. Du, Y. Zhang, Appl. Catal. B 199, 75 (2016)CrossRefGoogle Scholar
  22. 22.
    J. Li, G. Zhan, Y. Yu, L. Zhang, Nat. Commun. 7, 11480 (2016)CrossRefGoogle Scholar
  23. 23.
    X. Xiao, J. Jiang, L. Zhang, Appl. Catal. B, 142–143, 487 (2013)CrossRefGoogle Scholar
  24. 24.
    M. Zhao, L. Dong, Q. Zhang, H. Dong, C. Li, H. Tang, Powder Diffr. 31, 2 (2016)CrossRefGoogle Scholar
  25. 25.
    R. He, S. Cao, P. Zhou, J. Yu, Chin. J. Catal. 35, 989 (2014)CrossRefGoogle Scholar
  26. 26.
    M. Murali, C. Mahendra, N. Nagabhushan, M.S. Rajashekar, K.A. Sudarshana, K.N. Raveesha, Amruthesh, Spectrochim. Acta A 179, 104 (2017)CrossRefGoogle Scholar
  27. 27.
    A.O. Kondrakov, A.N. Ignatev, F.H. Frimmel, S. Bräse, H. Horn, A.I. Revelsky, Appl. Catal. B 160–161, 106 (2014)CrossRefGoogle Scholar
  28. 28.
    D. Huang, J. Ma, L. Yu, D. Wu, K. Wang, M. Yang, D. Papoulis, S. Komarneni, Sep. Purif. Technol. 156, 789 (2015)CrossRefGoogle Scholar
  29. 29.
    J. Li, S. Sun, R. Chen, T. Zhang, B. Ren, D.D. Dionysiou, Environ. Sci. Pollut. Res. 24, 1 (2017)CrossRefGoogle Scholar
  30. 30.
    J. Li, Y. Yu, L. Zhang, Nanoscale 6, 8473 (2014)CrossRefGoogle Scholar
  31. 31.
    A. Samadi-Maybodi, S.M. Pourali, Microporous Mesoporous Mater. 167, 127 (2013)CrossRefGoogle Scholar
  32. 32.
    J. Xu, W. Wang, M. Shang, E. Gao, Z. Zhang, J. Ren, J. Hazard. Mater. 196, 426 (2011)CrossRefGoogle Scholar
  33. 33.
    J. Zheng, F. Chang, M. Jiao, Q. Xu, B. Deng, X. Hu, J. Colloid Interface Sci. 510, 20 (2018)CrossRefGoogle Scholar
  34. 34.
    A.S. Komolov, Y.M. Zhukov, E.F. Lazneva, A.N. Aleshin, S.A. Pshenichnyuk, N.B. Gerasimova, Yu..A. Panina, G.D. Zashikhin, A.V. Baramygin, Mater. Des. 113, 319 (2017)CrossRefGoogle Scholar
  35. 35.
    C. Jin, L. Jin, M. Guo, P. Liu, J. Zhang, S. Bian, J. Colloid Interface Sci. 508, 426 (2017)CrossRefGoogle Scholar
  36. 36.
    J. Ye, Z. Zou, J. Phys. Chem. Solids 66, 266 (2005)CrossRefGoogle Scholar
  37. 37.
    X. Cheng, Q. Cheng, X. Deng, P. Wang, H. Liu, Chemosphere 144, 888 (2016)CrossRefGoogle Scholar
  38. 38.
    M. Dobromir, R.P. Apetrei, S. Rebegea, A.V. Manole, V. Nica, D. Luca, Surf. Coat. Technol. 285, 197 (2016)CrossRefGoogle Scholar
  39. 39.
    H. Li, H. Yu, X. Quan, S. Chen, Y. Zhang, ACS Appl. Mater. Interfaces 8, 2111 (2016)CrossRefGoogle Scholar
  40. 40.
    J. Di, J. Xia, M. Ji, B. Wang, S. Yin, Y. Huang, Appl. Catal. B 188, 376 (2016)CrossRefGoogle Scholar
  41. 41.
    W. Shan, Y. Hu, Z. Bai, M. Zheng, C. Wei, Appl. Catal. B 188, 1 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.School of Environment and ArchitectureUniversity of Shanghai for Science and TechnologyShanghaiPeople’s Republic of China
  2. 2.Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone ResearchChinese Academy of SciencesYantaiPeople’s Republic of China
  3. 3.Institute of Tianjin Seawater Desalination and Multipurpose UtilizationState Oceanic AdministrationTianjinPeople’s Republic of China

Personalised recommendations