Preparation of Magnetic Kaolinite Nanotubes for the Removal of Methylene Blue from Aqueous Solution

  • Hongliang Xu
  • Jinghao Liu
  • Pei Chen
  • Gang Shao
  • Bingbing Fan
  • Hailong Wang
  • Deliang Chen
  • Hongxia Lu
  • Rui Zhang


Kaolinite nanotubes (KNTs) were prepared by using a solvothermal method and natural kaolin as raw material. Magnetic kaolinite nanotubes (MKNTs), whose mass ratio of Fe3O4 to KNTs is 1:5, were prepared by the chemical co-precipitation method. The methylene blue (MB) adsorbing ability of the as received materials was studied. The chemical and mineral composition, structure and morphology of samples were investigated using X-ray fluorescence spectrometry analysis, X-ray powder diffraction, field-emission scanning electron microscopy, infrared spectroscopic analysis and N2 adsorption–desorption isotherm. A set of experiments were carried out under different conditions of contact time, adsorbent dosage, temperature, initial MB concentration and pH value to investigate the adsorption behavior of MB onto MKNTs. 94.20% of MB was removed by adding 0.04 g MKNTs into a 10 mg L−1 solution (50 mL) at 298 K for 20 min. The experimental adsorption data followed a pseudo-second-order kinetic model and Langmuir isotherm. MKNTs showed excellent magnetic separation property and reusability.


Kaolinite Magnetic kaolinite nanotubes Adsorption Methylene blue 



The authors are grateful to the financial support from the Key Scientific Research Projects for Institutes of Higher Education of Henan Province, China (Grant Number 15A430010).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    A.K. Verma, R.R. Dash, P. Brunia, J. Environ. Manag. 93, 154–168 (2012)CrossRefGoogle Scholar
  2. 2.
    A.N. Kabra, R.V. Khandare, S.P. Govindwar, Water Res. 47, 1035–1048 (2013)CrossRefGoogle Scholar
  3. 3.
    B. Mondal, V.C. Srivastava, J.P. Kushawaha, R. Bhatnagar, S. Singh, I.D. Mall, Sep. Purif. Technol. 109, 135–143 (2013)CrossRefGoogle Scholar
  4. 4.
    I. Vergili, Y. Kaya, U. Sem, Z.B. Gonder, C. Aydiner, Resour. Conserv. Recycl. 58, 25–35 (2012)CrossRefGoogle Scholar
  5. 5.
    C.H. Zhou, D. Zhang, D.S. Tong, L.M. Wu, W.H. Yu, S. Ismadji, Chem. Eng. J. 209, 223–234 (2012)CrossRefGoogle Scholar
  6. 6.
    Saepurahman, G.P. Singaravel, R. Hashaikeh, J. Mater. Sci. 51, 1133–1141 (2016)CrossRefGoogle Scholar
  7. 7.
    L. Cottet, C.A.P. Almeida, N. Naidek, M.F. Viante, M.C. Lopes, N.A. Debacher, Appl. Clay Sci. 95, 25–31 (2014)CrossRefGoogle Scholar
  8. 8.
    P. Sivakumar, P.N. Palanisamy, J. Chem. Tech. Res. 1, 502–510 (2009)Google Scholar
  9. 9.
    Y. Zhao, E. Abdullayev, A. Vasiliev, Y. Lvov, J. Colloid Interface Sci. 406, 121–129 (2013)CrossRefGoogle Scholar
  10. 10.
    G. Crini, Bioresour. Technol. 97, 1061–1085 (2006)CrossRefGoogle Scholar
  11. 11.
    B.K. Nandi, A. Goswami, M.K. Purkait, Appl. Clay Sci. 42, 583–590 (2009)CrossRefGoogle Scholar
  12. 12.
    S.L. Lin, Z.L. Song, G.B. Che, A. Ren, P. Li, C.B. Liu, J.S. Zhang, Microporous Mesoporous Mater. 193, 27–34 (2014)CrossRefGoogle Scholar
  13. 13.
    A.P. DiazGomez-Trevino, V. Martinez-Miranda, M. Solache-Rios, Appl. Clay Sci. 80–81, 219–225 (2013)CrossRefGoogle Scholar
  14. 14.
    C.H. Zhou, J. Keeling, Appl. Clay Sci. 74, 3–9 (2013)CrossRefGoogle Scholar
  15. 15.
    J. Chang, J. Ma, Q. Ma, D. Zhang, N. Qiao, M. Hu, H. Ma, Appl. Clay Sci. 119, 132–140 (2016)CrossRefGoogle Scholar
  16. 16.
    D. Ghosh, K.G. Bhattacharyya, Appl. Clay Sci. 20, 295–300 (2002)CrossRefGoogle Scholar
  17. 17.
    M.F. Zhao, P. Liu, Microporous Mesoporous Mater. 112, 419–424 (2008)CrossRefGoogle Scholar
  18. 18.
    P. Yuan, D.Y. Tan, F. Annabi-Bergaya, Appl. Clay Sci. 112, 75–93 (2015)CrossRefGoogle Scholar
  19. 19.
    S. Bouzid, A. Khenifi, K.A. Bennabou, R. Trujillano, M.A. Vicente, Z. Derriche, Chem. Eng. Commun. 202, 520–533 (2015)CrossRefGoogle Scholar
  20. 20.
    R.C. Liu, B. Zhang, D.D. Mei, H.Q. Zhang, J.D. Liu, Desalination 268, 111–116 (2011)CrossRefGoogle Scholar
  21. 21.
    Y. Xie, D. Qian, D. Wu, X. Ma, Chem. Eng. J. 168, 959–963 (2011)CrossRefGoogle Scholar
  22. 22.
    B. Szczepanik, P. Słomkiewicz, M. Garnuszek, K. Czech, Appl. Clay Sci. 101, 260–264 (2014)CrossRefGoogle Scholar
  23. 23.
    P. Pasbakhsh, G.J. Churchman, J.L. Keeling, Appl. Clay Sci. 74, 47–57 (2013)CrossRefGoogle Scholar
  24. 24.
    H.L. Xu, M. Wang, Q.F. Liu, D.L. Chen, H.L. Wang, K.J. Yang, S.K. Guan, J. Phys. Chem. Solids 72, 24–28 (2011)CrossRefGoogle Scholar
  25. 25.
    H.F. Cheng, S. Zhang, Q.F. Liu, X. Li, R.L. Frost, Appl. Clay Sci. 116, 273–280 (2015)CrossRefGoogle Scholar
  26. 26.
    H.F. Cheng, Q.F. Liu, J. Zhang, J. Yang, R.L. Frost, J. Colloid Interface Sci. 348, 355–359 (2010)CrossRefGoogle Scholar
  27. 27.
    X.G. Li, Q.F. Liu, H.F. Cheng, S. Zhang, R.L. Frost, J. Colloid Interface Sci. 444, 74–80 (2015)CrossRefGoogle Scholar
  28. 28.
    J.E.F.C. Gardolinski, G. Lagaly, Clay Miner. 40, 547–556 (2005)CrossRefGoogle Scholar
  29. 29.
    Y. Kuroda, K. Ito, K. Itabashi, K. Kuroda, Langmuir 27, 2028–2035 (2011)CrossRefGoogle Scholar
  30. 30.
    P. Yuan, D. Tan, F. Annabi-Bergaya, W. Yan, D. Liu, Z. Liu, Appl. Clay Sci. 83, 68–76 (2013)CrossRefGoogle Scholar
  31. 31.
    H.L. Xu, X.Z. Jin, P. Chen, G. Shao, H.L. Wang, D.L. Chen, H.X. Lu, R. Zhang, Ceram. Int. 41, 6463–6469 (2015)CrossRefGoogle Scholar
  32. 32.
    K.R. Parmar, I. Patel, S. Basha, Z.V.P. Murthy, J. Mater. Sci. 49, 6772–6783 (2014)CrossRefGoogle Scholar
  33. 33.
    H.J. Song, S.S. You, X.H. Jia, J. Yang, Ceram. Int. 41, 13896–13902 (2015)CrossRefGoogle Scholar
  34. 34.
    P. Yuan, M. Fan, D. Yang, H.P. He, D. Liu, A.H. Yuan, J.X. Zhu, T.H. Chen, J. Hazard. Mater. 166, 821–829 (2009)CrossRefGoogle Scholar
  35. 35.
    C.A.P. Almeida, N.A. Debacher, A.J. Downs, L. Cottet, C.A.D. Mello, J. Colloid Interface Sci. 332, 46–53 (2009)CrossRefGoogle Scholar
  36. 36.
    Y. Liu, Y. Kang, B. Mu, Chem. Eng. J. 237, 403–4010 (2014)CrossRefGoogle Scholar
  37. 37.
    M. Auta, B.H. Hameed, Chem. Eng. J. 198, 219–227 (2012)CrossRefGoogle Scholar
  38. 38.
    V.K. Gupta, I. Ali, V.K. Saini, J. Colloid Interface Sci. 315, 87–93 (2007)CrossRefGoogle Scholar
  39. 39.
    J.X. Zhang, Q.X. Zhou, L.L. Ou, J. Chem. Eng. 57, 412–419 (2012)CrossRefGoogle Scholar
  40. 40.
    B. Bestani, N. Benderdouche, B. Benstaali, M. Belhakem, A. Addou, Bioresour. Technol. 99, 8441–8444 (2008)CrossRefGoogle Scholar
  41. 41.
    Y.S. Ho, G. McKay, Process Biochem. 34, 451–465 (1999)CrossRefGoogle Scholar
  42. 42.
    G.T. Barnes, I.R. Gentle, Interfacial Science. (Oxford University Press, Oxford, 2005)Google Scholar
  43. 43.
    L.L. Fan, C.N. Luo, X.J. Li, F.G. Lu, H.M. Qiu, M. Sun, J. Hazard. Mater. 215, 272–279 (2012)CrossRefGoogle Scholar
  44. 44.
    R.L. Ledoux, Clays Clay Miner. 13, 289–315 (1964)CrossRefGoogle Scholar
  45. 45.
    D.R. Collins, C.R.A. Catlow, Acta Crystallogr. B 47, 678–682 (1991)CrossRefGoogle Scholar
  46. 46.
    A.C. Hess, V.R. Saunders, J. Phys. Chem. 96, 4367–4374 (1992)CrossRefGoogle Scholar
  47. 47.
    K. Wada, Am. Mineral. 50, 924–941 (1965)Google Scholar
  48. 48.
    M. Valášková, M. Rieder, V. Matějka, P. Čapková, A. Slíva, Appl. Clay Sci. 35, 108–118 (2007)CrossRefGoogle Scholar
  49. 49.
    Q. Wang, J. Zhang, Y. Zheng, A. Wang, Colloids Surf. B 113, 51–58 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringZhengzhou UniversityZhengzhouPeople’s Republic of China
  2. 2.Zhengzhou Institute of Aeronautical Industry ManagementZhengzhouPeople’s Republic of China
  3. 3.Funik Ultrahard Material CO., LTDZhengzhouPeople’s Republic of China

Personalised recommendations