Preparation of Magnetic Kaolinite Nanotubes for the Removal of Methylene Blue from Aqueous Solution
- 63 Downloads
Abstract
Kaolinite nanotubes (KNTs) were prepared by using a solvothermal method and natural kaolin as raw material. Magnetic kaolinite nanotubes (MKNTs), whose mass ratio of Fe3O4 to KNTs is 1:5, were prepared by the chemical co-precipitation method. The methylene blue (MB) adsorbing ability of the as received materials was studied. The chemical and mineral composition, structure and morphology of samples were investigated using X-ray fluorescence spectrometry analysis, X-ray powder diffraction, field-emission scanning electron microscopy, infrared spectroscopic analysis and N2 adsorption–desorption isotherm. A set of experiments were carried out under different conditions of contact time, adsorbent dosage, temperature, initial MB concentration and pH value to investigate the adsorption behavior of MB onto MKNTs. 94.20% of MB was removed by adding 0.04 g MKNTs into a 10 mg L−1 solution (50 mL) at 298 K for 20 min. The experimental adsorption data followed a pseudo-second-order kinetic model and Langmuir isotherm. MKNTs showed excellent magnetic separation property and reusability.
Keywords
Kaolinite Magnetic kaolinite nanotubes Adsorption Methylene blueNotes
Acknowledgements
The authors are grateful to the financial support from the Key Scientific Research Projects for Institutes of Higher Education of Henan Province, China (Grant Number 15A430010).
Compliance with Ethical Standards
Conflict of interest
The authors declare that they have no conflict of interest.
References
- 1.A.K. Verma, R.R. Dash, P. Brunia, J. Environ. Manag. 93, 154–168 (2012)CrossRefGoogle Scholar
- 2.A.N. Kabra, R.V. Khandare, S.P. Govindwar, Water Res. 47, 1035–1048 (2013)CrossRefGoogle Scholar
- 3.B. Mondal, V.C. Srivastava, J.P. Kushawaha, R. Bhatnagar, S. Singh, I.D. Mall, Sep. Purif. Technol. 109, 135–143 (2013)CrossRefGoogle Scholar
- 4.I. Vergili, Y. Kaya, U. Sem, Z.B. Gonder, C. Aydiner, Resour. Conserv. Recycl. 58, 25–35 (2012)CrossRefGoogle Scholar
- 5.C.H. Zhou, D. Zhang, D.S. Tong, L.M. Wu, W.H. Yu, S. Ismadji, Chem. Eng. J. 209, 223–234 (2012)CrossRefGoogle Scholar
- 6.Saepurahman, G.P. Singaravel, R. Hashaikeh, J. Mater. Sci. 51, 1133–1141 (2016)CrossRefGoogle Scholar
- 7.L. Cottet, C.A.P. Almeida, N. Naidek, M.F. Viante, M.C. Lopes, N.A. Debacher, Appl. Clay Sci. 95, 25–31 (2014)CrossRefGoogle Scholar
- 8.P. Sivakumar, P.N. Palanisamy, J. Chem. Tech. Res. 1, 502–510 (2009)Google Scholar
- 9.Y. Zhao, E. Abdullayev, A. Vasiliev, Y. Lvov, J. Colloid Interface Sci. 406, 121–129 (2013)CrossRefGoogle Scholar
- 10.G. Crini, Bioresour. Technol. 97, 1061–1085 (2006)CrossRefGoogle Scholar
- 11.B.K. Nandi, A. Goswami, M.K. Purkait, Appl. Clay Sci. 42, 583–590 (2009)CrossRefGoogle Scholar
- 12.S.L. Lin, Z.L. Song, G.B. Che, A. Ren, P. Li, C.B. Liu, J.S. Zhang, Microporous Mesoporous Mater. 193, 27–34 (2014)CrossRefGoogle Scholar
- 13.A.P. DiazGomez-Trevino, V. Martinez-Miranda, M. Solache-Rios, Appl. Clay Sci. 80–81, 219–225 (2013)CrossRefGoogle Scholar
- 14.C.H. Zhou, J. Keeling, Appl. Clay Sci. 74, 3–9 (2013)CrossRefGoogle Scholar
- 15.J. Chang, J. Ma, Q. Ma, D. Zhang, N. Qiao, M. Hu, H. Ma, Appl. Clay Sci. 119, 132–140 (2016)CrossRefGoogle Scholar
- 16.D. Ghosh, K.G. Bhattacharyya, Appl. Clay Sci. 20, 295–300 (2002)CrossRefGoogle Scholar
- 17.M.F. Zhao, P. Liu, Microporous Mesoporous Mater. 112, 419–424 (2008)CrossRefGoogle Scholar
- 18.P. Yuan, D.Y. Tan, F. Annabi-Bergaya, Appl. Clay Sci. 112, 75–93 (2015)CrossRefGoogle Scholar
- 19.S. Bouzid, A. Khenifi, K.A. Bennabou, R. Trujillano, M.A. Vicente, Z. Derriche, Chem. Eng. Commun. 202, 520–533 (2015)CrossRefGoogle Scholar
- 20.R.C. Liu, B. Zhang, D.D. Mei, H.Q. Zhang, J.D. Liu, Desalination 268, 111–116 (2011)CrossRefGoogle Scholar
- 21.Y. Xie, D. Qian, D. Wu, X. Ma, Chem. Eng. J. 168, 959–963 (2011)CrossRefGoogle Scholar
- 22.B. Szczepanik, P. Słomkiewicz, M. Garnuszek, K. Czech, Appl. Clay Sci. 101, 260–264 (2014)CrossRefGoogle Scholar
- 23.P. Pasbakhsh, G.J. Churchman, J.L. Keeling, Appl. Clay Sci. 74, 47–57 (2013)CrossRefGoogle Scholar
- 24.H.L. Xu, M. Wang, Q.F. Liu, D.L. Chen, H.L. Wang, K.J. Yang, S.K. Guan, J. Phys. Chem. Solids 72, 24–28 (2011)CrossRefGoogle Scholar
- 25.H.F. Cheng, S. Zhang, Q.F. Liu, X. Li, R.L. Frost, Appl. Clay Sci. 116, 273–280 (2015)CrossRefGoogle Scholar
- 26.H.F. Cheng, Q.F. Liu, J. Zhang, J. Yang, R.L. Frost, J. Colloid Interface Sci. 348, 355–359 (2010)CrossRefGoogle Scholar
- 27.X.G. Li, Q.F. Liu, H.F. Cheng, S. Zhang, R.L. Frost, J. Colloid Interface Sci. 444, 74–80 (2015)CrossRefGoogle Scholar
- 28.J.E.F.C. Gardolinski, G. Lagaly, Clay Miner. 40, 547–556 (2005)CrossRefGoogle Scholar
- 29.Y. Kuroda, K. Ito, K. Itabashi, K. Kuroda, Langmuir 27, 2028–2035 (2011)CrossRefGoogle Scholar
- 30.P. Yuan, D. Tan, F. Annabi-Bergaya, W. Yan, D. Liu, Z. Liu, Appl. Clay Sci. 83, 68–76 (2013)CrossRefGoogle Scholar
- 31.H.L. Xu, X.Z. Jin, P. Chen, G. Shao, H.L. Wang, D.L. Chen, H.X. Lu, R. Zhang, Ceram. Int. 41, 6463–6469 (2015)CrossRefGoogle Scholar
- 32.K.R. Parmar, I. Patel, S. Basha, Z.V.P. Murthy, J. Mater. Sci. 49, 6772–6783 (2014)CrossRefGoogle Scholar
- 33.H.J. Song, S.S. You, X.H. Jia, J. Yang, Ceram. Int. 41, 13896–13902 (2015)CrossRefGoogle Scholar
- 34.P. Yuan, M. Fan, D. Yang, H.P. He, D. Liu, A.H. Yuan, J.X. Zhu, T.H. Chen, J. Hazard. Mater. 166, 821–829 (2009)CrossRefGoogle Scholar
- 35.C.A.P. Almeida, N.A. Debacher, A.J. Downs, L. Cottet, C.A.D. Mello, J. Colloid Interface Sci. 332, 46–53 (2009)CrossRefGoogle Scholar
- 36.Y. Liu, Y. Kang, B. Mu, Chem. Eng. J. 237, 403–4010 (2014)CrossRefGoogle Scholar
- 37.M. Auta, B.H. Hameed, Chem. Eng. J. 198, 219–227 (2012)CrossRefGoogle Scholar
- 38.V.K. Gupta, I. Ali, V.K. Saini, J. Colloid Interface Sci. 315, 87–93 (2007)CrossRefGoogle Scholar
- 39.J.X. Zhang, Q.X. Zhou, L.L. Ou, J. Chem. Eng. 57, 412–419 (2012)CrossRefGoogle Scholar
- 40.B. Bestani, N. Benderdouche, B. Benstaali, M. Belhakem, A. Addou, Bioresour. Technol. 99, 8441–8444 (2008)CrossRefGoogle Scholar
- 41.Y.S. Ho, G. McKay, Process Biochem. 34, 451–465 (1999)CrossRefGoogle Scholar
- 42.G.T. Barnes, I.R. Gentle, Interfacial Science. (Oxford University Press, Oxford, 2005)Google Scholar
- 43.L.L. Fan, C.N. Luo, X.J. Li, F.G. Lu, H.M. Qiu, M. Sun, J. Hazard. Mater. 215, 272–279 (2012)CrossRefGoogle Scholar
- 44.R.L. Ledoux, Clays Clay Miner. 13, 289–315 (1964)CrossRefGoogle Scholar
- 45.D.R. Collins, C.R.A. Catlow, Acta Crystallogr. B 47, 678–682 (1991)CrossRefGoogle Scholar
- 46.A.C. Hess, V.R. Saunders, J. Phys. Chem. 96, 4367–4374 (1992)CrossRefGoogle Scholar
- 47.K. Wada, Am. Mineral. 50, 924–941 (1965)Google Scholar
- 48.M. Valášková, M. Rieder, V. Matějka, P. Čapková, A. Slíva, Appl. Clay Sci. 35, 108–118 (2007)CrossRefGoogle Scholar
- 49.Q. Wang, J. Zhang, Y. Zheng, A. Wang, Colloids Surf. B 113, 51–58 (2015)CrossRefGoogle Scholar