Synthesis and Electrochemical Performance of Spheroid LiNi1/3Co1/3Mn1/3O2 in the Electrolyte Modified by Ethylene Sulfate and Methylene Methanedisulfonate

  • Yongli Cui
  • Chao Yang
  • Zhiheng Zhuang
  • Mingzhen Wang
  • Quanchao Zhuang


In this study, spheroid LiNi1/3Co1/3Mn1/3O2 (NCM111) cathode material were synthesized using LiOH with Ni0.5Co0.2Mn0.3(OH)2 precursor by a simple solid-state reaction, and characterized by X-ray diffraction and scanning electron microscopy. Electrochemical behavior of NCM111 was investigated by electrochemical impedance spectroscopy (EIS) combining with cyclic voltammogram (CV) and charge/discharge test in the 1 M LiPF6-EC:EMC electrolyte with ethylene sulfate (DTD) and methylene methanedisulfonate (MMDS) additives either singly or in combination with high cutoff voltage of 3.0–4.5 V at room temperature of 25 °C or elevated temperature of 55 °C. It was found that DTD additive can increase the initial coulombic efficiency of NCM111, and the spheroid NCM111 can obtain the maximum initial discharge capacity of 177.81 mAh/g with the 2 wt% DTD, and keep 92.29% capacity retention after 80 cycles. The MMDS additives would decrease the initial discharge capacity of the NCM111, and enhance significantly long cycle life of the NCM111 with the capacity retention of 99.23% over 80 cycles at high voltage of 4.5 V. The additive combination 2 wt% DTD + 1 wt% MMDS was an optimal additive combination, demonstrating the 102.2% capacity retention over 80 cycles at room temperature and the 94.2% capacity retention over 70 cycles at elevated temperature of 55 °C. EIS results revealed that the additive blend of 2 wt% DTD + 1 wt% MMDS can drastically lower the kinetics impedance and suppress the growth rate of R ct for the NCM111 electrode.


Spheroid LiNi1/3Co1/3Mn1/3O2 Electrolyte additives Electrochemical performance Lithium ion battery 



This work was supported by the Fundamental Research Funds for the Central Universities (2015XKMS068).


  1. 1.
    J. Kasnatscheew, M. Evertz, B. Streipert, R. Wagner, S. Nowak, I. Cekic Laskovic, J. Phys. Chem. C 121, 1521 (2017)CrossRefGoogle Scholar
  2. 2.
    J.W. Fergus, J. Power Sources 195, 939 (2010)CrossRefGoogle Scholar
  3. 3.
    K.M. Shaju, G.V.S. Rao, B.V.R. Chowdari, Electrochim. Acta 48, 145 (2002)CrossRefGoogle Scholar
  4. 4.
    N. Yabuuchi, K. Yoshii, S.T. Myung, I. Nakai, S. Komaba, J. Am. Chem. Soc. 133, 4404 (2011)CrossRefGoogle Scholar
  5. 5.
    C.S. Johnson, N.C. Li, C. Lefief, J.T. Vaughey, M.M. Thackeray, Chem. Mater. 20, 6095 (2008)CrossRefGoogle Scholar
  6. 6.
    B.C. Park, H.B. Kim, S.T. Myung, K. Amine, I. Belharouak, S.M. Lee, Y.K. Sun, J. Power Sources 178, 826 (2008)CrossRefGoogle Scholar
  7. 7.
    G.H. Kim, J.H. Kim, S.T. Myung, C.S. Yoon, Y.K. Sun, J. Electrochem. Soc. 152, A1707 (2005)CrossRefGoogle Scholar
  8. 8.
    G.H. Kim, M.H. Kim, S.T. Myung, Y.K. Sun, J. Power Sources 146, 602 (2005)CrossRefGoogle Scholar
  9. 9.
    K. Xu, Chem. Rev. 114, 11503 (2014)CrossRefGoogle Scholar
  10. 10.
    K. Abe, M. Colera, K. Shimamoto, J. Electrochem. Soc. 161, A863 (2014)CrossRefGoogle Scholar
  11. 11.
    X. Zuo, C. Fan, X. Xiao, J. Liu, J. Nan, J. Power Sources 219, 94 (2012)CrossRefGoogle Scholar
  12. 12.
    X. Zuo, C. Fan, X. Xiao, J. Liu, J. Nan, ECS Electrochem. Lett. 1, A50 (2012)CrossRefGoogle Scholar
  13. 13.
    J. Xia, N.N. Sinha, L.P. Chen, G.Y. Kim, D.J. Xiong, J.R. Dahn, J. Electrochem. Soc. 161, A84 (2014)CrossRefGoogle Scholar
  14. 14.
    J. Xia, J.E. Harlow, R. Petibon, J.C. Burns, L.P. Chen, J.R. Dahn, J. Electrochem. Soc. 161, A547 (2014)CrossRefGoogle Scholar
  15. 15.
    J. Xia, N.N. Sinha, L.P. Chen, J.R. Dahn, J. Electrochem. Soc. 161, A264 (2014)CrossRefGoogle Scholar
  16. 16.
    J. Xia, C.P. Aiken, L. Ma, G.Y. Kim, J.C. Burns, L.P. Chen, J.R. Dahn, J. Electrochem. Soc. 161, A1149 (2014)CrossRefGoogle Scholar
  17. 17.
    J. Xia, L. Ma, C.P. Aiken, K.J. Nelson, L.P. Chen, J.R. Dahn, J. Electrochem. Soc. 161, A1634 (2014)CrossRefGoogle Scholar
  18. 18.
    T. Ohzuku, Y. Makimura, Chem. Lett. 30, 642 (2001)CrossRefGoogle Scholar
  19. 19.
    Q. Qiu, X. Huang, Y.M. Chen, Y. Tan, W.Z. Lv, Ceram. Int. 40, 10511, (2014)CrossRefGoogle Scholar
  20. 20.
    W.W. Wu, H.F. Xiang, G.B. Zhong, W. Tang, Y. Yu, C.H. Chen, Electrochim. Acta 119, 206 (2014)CrossRefGoogle Scholar
  21. 21.
    Q. Wang, J. Sun, X. Yao, C. Chen, J. Electrochem. Soc. 1532, A329 (2006)CrossRefGoogle Scholar
  22. 22.
    E.P. Roth, C.J. Orendorff, Electrochem. Soc. Interface 21, 45 (2012)CrossRefGoogle Scholar
  23. 23.
    M.G.S.R. Thomas, P.G. Bruce, J.B. Goodenough, J. Electrochem. Soc. 132, 1521 (1985)CrossRefGoogle Scholar
  24. 24.
    M.D. Levi, K. Gamolsky, D. Aurbach, U. Heider, R. Oesten, Electrochim. Acta 45, 1781 (2000)CrossRefGoogle Scholar
  25. 25.
    G.C. Yan, X.H. Li, Z.X. Wang, H.J. Guo, C. Wang, J. Power Sources 248, 1306 (2014)CrossRefGoogle Scholar
  26. 26.
    S.K. Jung, H. Gwon, J. Hong, K.Y. Park, D.H. Seo, H. Kim, J. Hyun, W. Yang, K. Kang, Adv. Energy Mater. 4, 1300787 (2014)CrossRefGoogle Scholar
  27. 27.
    Y.L. Cui, J.L. Wang, M.Z. Wang, Q.C. Zhuang, Funct. Mater. Lett. 9, 1650027 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringChina University of Mining & TechnologyXuzhouChina

Personalised recommendations