Synthesis, Characterisation and DFT Studies of Stigmasterol Mediated Silver Nanoparticles and Their Anticancer Activity

  • K. Kanagamani
  • P. Muthukrishnan
  • M. Ilayaraja
  • K. Shankar
  • A. Kathiresan
Article
  • 55 Downloads

Abstract

The present investigation reports the facile, reproducible and eco-friendly biological synthesis of nano silver using Ficus Hispida leaf extract (FHLE) as a reductant. The properties of the synthesized silver nanoparticles (Ag-NP’s) is characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy (TEM), UV–visible spectroscopy, Fourier transform infrared spectroscopy and X-ray diffraction studies. The synthesized Ag-NPs are found to have spherical shape with average particle size in the range of 50–100 nm. The XRD studies and selected area electron diffraction pattern of TEM images confirm the face cantered cubic structure of biosynthesised silver nanoparticles. The DFT studies reveal that the stigmasterol present in FHLE is responsible for leaf extract to behave as a reducing agent for reduction of Ag+ ions into Ag0. The antitumor studies against DLA cell lines of the biosynthesized Ag-NPs is found to have 100% inhibition with concentration of 200 µg/ml of Ag-NP’s.

Keywords

Silver nanoparticles Ficus Hispida DFT studies Cytotoxicity activity 

References

  1. 1.
    A. Prabhu, K. Shankar, P. Muthukrishnan, A. Kathiresan, P. Prakash, Indo Am. J. Pharm. Res. 3, 37 (2016)Google Scholar
  2. 2.
    B. Ankamwar, E-J.Chem. 7, 1334 (2010)CrossRefGoogle Scholar
  3. 3.
    Q.Y. Deng, B. Yang, J.F. Wang, C.G. Whiteley, X.N. Wang, Biotechnol. Lett. 10, 1505 (2009)CrossRefGoogle Scholar
  4. 4.
    R. Sathyavathi, M. Balamurali Krishna, S. Venugopal Rao, R. Saritha, D. Narayana Rao, Adv. Sci. Lett. 3, 138 (2010)CrossRefGoogle Scholar
  5. 5.
    S.J. Henley, J.D. Carey, S.R.P. Silva, Appl. Phys. Lett. 89, 183120 (2006)CrossRefGoogle Scholar
  6. 6.
    D.D. Evanoff Jr, G. Chumanov, Chem. Phys. Chem. 6, 1221 (2005)CrossRefGoogle Scholar
  7. 7.
    T.M. Tolaymat, A.M. El Badawy, A. Genaidy, K.G. Scheckel, T.P. Luxton, M. Suidan, Sci. Total Environ. 408, 999 (2010)CrossRefGoogle Scholar
  8. 8.
    M.G. Guzmán, J. Dille, S. Godet, World Acad. Sci. Eng. Technol. 43, 357 (2008)Google Scholar
  9. 9.
    S. Navaladian, B. Viswanathan, R.P. Viswanath, T.K. Varadarajan, Nanoscale Res. Lett. 2, 44 (2007)CrossRefGoogle Scholar
  10. 10.
    K.J. Sreeram, M. Nidhin, B.U. Nair, Bull. Mater. Sci. 31, 937 (2008)CrossRefGoogle Scholar
  11. 11.
    R. Zamiri, A. Zakaria, H. Abbastabar, M. Darroudi, M. Shahril Husin, M.A. Mahdi, Int. J. Nanomed. 6, 565 (2011)CrossRefGoogle Scholar
  12. 12.
    M. Sastry, A. Ahmad, M. Islam Khan, R. Kumar, Curr. Sci. 85, 162 (2003)Google Scholar
  13. 13.
    S. Schultz, D.R. Smith, J.J. Mock, D.A. Schultz, Proc. Natl. Acad. Sci. USA 97, 996 (2000)CrossRefGoogle Scholar
  14. 14.
    M. Rai, A. Yadav, A. Gade, Biotechnol. Adv. 27, 76 (2009)CrossRefGoogle Scholar
  15. 15.
    J.L. Elechiguerra, J.L. Burt, J.R. Morones, A. Camacho-Bragado, X. Gao, H. Lara, M.J. Yacaman, J. Nanobiotechnol. (2005). doi: 10.1186/1477-3155-3-6 Google Scholar
  16. 16.
    R. Emmanuel, P. Selvakumar, S.M. Chen, K. Chelladurai, S. Padmavathy, M. Saravanan, P. Prakash, M. Ajmal Ali, F.M. Al-Hemaid, Mater. Sci. Eng. C 56, 374 (2015)CrossRefGoogle Scholar
  17. 17.
    S. Arokiyaraj, V. Dinesh Kumar, V. Elakya, T. Kamala, S.K. Park, M. Ragam, M. Saravanan, M. Bououdina, M.V. Arasu, K. Kovendan, S. Vincent, Environ. Sci. Pollut. Res. Int. 22, 9759 (2015)CrossRefGoogle Scholar
  18. 18.
    S. Arokiyaraj, S. Vincent, M. Saravanan, Y. Lee, Y.K. Oh, K.H. Kim, Artif. Cell Nanomed. Biotechnol. 45, 372 (2017)CrossRefGoogle Scholar
  19. 19.
    K. Muthupandi, M. Saravanan, P. Prakash, H. Kumar, M. Ovais, H. Barabadi, Z. Khan, J. Interdiscip. Nanomed. 2, 131 (2017)CrossRefGoogle Scholar
  20. 20.
    R.M. Crooks, B.I. Lemon, L. Sun, L.K. Yeung, M. Zhao, Top. Curr. Chem. 212, 82 (2001)Google Scholar
  21. 21.
    P. Raveendran, J. Fu, S.L. Wallen, Green Chem. 8, 34 (2006)CrossRefGoogle Scholar
  22. 22.
    P. Magudapathy, P. Gangopadhyay, B.K. Panigrahi, K.G.M. Nair, S. Dhara, Phys. B 299, 142 (2001)CrossRefGoogle Scholar
  23. 23.
    R. Joerger, T. Klaus, C.G. Granqvist, Adv. Mater. 12, 407 (2000)CrossRefGoogle Scholar
  24. 24.
    S. Arora, J. Jain, J.M. Rajwade, K.M. Paknikar, Toxicol. Lett. 179, 93 (2008)CrossRefGoogle Scholar
  25. 25.
    P. Prakash, P. Gnanaprakasam, R. Emmanuel, S. Arokiyaraj, M. Saravanan, Colloids Surf. B 108, 255 (2013)CrossRefGoogle Scholar
  26. 26.
    K. Muthupandi, P. Prakash, M. Saravanan, M. Mahalakshmi, Microb. Pathog. 107, 327 (2017)CrossRefGoogle Scholar
  27. 27.
    A. Kumari, P. Kumar, P.M. Ajayan, G. John, Nat. Mater. 7, 236 (2008)CrossRefGoogle Scholar
  28. 28.
    K. Dunn, V. Edwards-Jones, Burns 30, S1 (2004)CrossRefGoogle Scholar
  29. 29.
    I.F. Tannock, R.P. Hilp, The basic Science of Oncology, 4th edn. (McGraw Hill, New York, 2007)Google Scholar
  30. 30.
    J.K. Srivasthava, S. Gupta, Biochem. Biophys. Res. Commun. 346, 447 (2006)CrossRefGoogle Scholar
  31. 31.
    P. Muthukrishnan, P. Prakash, B. Jeyaprabha, K. Shankar, Arab. J. Chem. (2015). doi. 10.1016/j.arabjc.2015.09.005 Google Scholar
  32. 32.
    M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr, J.E. Peralta, F. Ogliaro, M.J. Bearpark, J. Heyd, E.N. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A.P. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N.J. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian Revision C.01 (Gaussian Inc., Wallingford, 2009)Google Scholar
  33. 33.
    S. Bhuvaneshwari, S. Murugesan, Bangladesh J. Pharmacal. 7,173 (2012)Google Scholar
  34. 34.
    S. Gurunathan, K.J. Lee, K. Kalishwaralal, S. Sheikpranbabu, R. Vaidyanathan, S.H. Eom, Biomaterials 30, 6341 (2009)CrossRefGoogle Scholar
  35. 35.
    M. Ovais, A.T. Khalil, A. Raza, M. Adeep Khan, I. Ahmad, N.U. Islam, M. Saravanan, M. Furqan Ubaid, M. Ali, Z.K. Shinwari, Nanomedicine 11, 3157 (2016)CrossRefGoogle Scholar
  36. 36.
    S. Gurunathan, J.H. Park, J.W. Han, J.H. Kim, Int. J. Nanomed. 10, 4203 (2015)CrossRefGoogle Scholar
  37. 37.
    M. Vishnu Kiran, S. Murugesan, World J. Pharm. Sci. 2, 96 (2014)Google Scholar
  38. 38.
    M. Raafat, K. Mohamed, F. Awad, M. Atlam, Appl. Surf. Sci. 255, 2433 (2008)CrossRefGoogle Scholar
  39. 39.
    G. Guo, L. Chenghao, Electrochim. Acta 52, 4554 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • K. Kanagamani
    • 1
    • 2
  • P. Muthukrishnan
    • 2
  • M. Ilayaraja
    • 3
  • K. Shankar
    • 2
  • A. Kathiresan
    • 2
  1. 1.Department of ChemistrySNS College of TechnologyCoimbatoreIndia
  2. 2.Department of Chemistry, Faculty of Engineering, Karpagam Academy of Higher EducationKarpagam UniversityCoimbatoreIndia
  3. 3.Department of ChemistryArumugam Pillai Seethai Ammal CollegeTirupatturIndia

Personalised recommendations