Morphology Tailored Synthesis of C-WO3 nanostructures and its Photocatalytic Application

  • M. B. Tahir
  • Ghulam Nabi
  • A. Hassan
  • T. Iqbal
  • H. Kiran
  • A. Majid


Photocatalytic degradation is an ambitious and cost effective technique used for decontamination and sanitization of the waste polluted water of environment. Hydrothermal method is used to synthesis the carbon coupled WO3 nanoparticles with different concentrations of carbon (0.0, 0.2, 0.5, 1.0 and 2.0%) from precursor Na2WO4·2H2O with glucose and nitric acid. Synthesized nanoparticles were characterized by SEM, EDX, XRD, UV–Vis, and PL to study morphology, and particle size, composition, structural and optical properties, respectively. SEM revealed that morphology of the carbon coupled WO3 nanoparticles becomes spherical by increasing amount of coupled carbon atoms. The average grain size of the carbon doped nanoparticles is found to be 15–20 nm. Furthermore, size of nanoparticles affect the band gap of synthesized nanoparticles as well. It has also been observed that carbon coupled WO3 nanoparticles effectively take part in photo degradation due to reduction of electron–hole recombination rate.


WO3 Nanoparticles Morphology Hydrothermal method 


  1. 1.
    J. Yin, B. Deng, J. Membr. Sci. 479, 256–275 (2015)CrossRefGoogle Scholar
  2. 2.
    E. Brillas, C.A. Martinez-Huitle, Appl. Catal. B 166, 603–643 (2015)CrossRefGoogle Scholar
  3. 3.
    A. Cincinelli, T. Martellini, E. Coppini, D. Fibbi, A. Katsoyiannis, J. Nanosci. Nanotechnol. 15, 3333–3347 (2015)CrossRefGoogle Scholar
  4. 4.
    H.M. Saeed, G.A. Husseini, S. Yousef, J. Saif, S. Al-Asheh, A. Abu Fara, S. Azzam, R. Khawaga, A. Aidan, Desalination 359, 1–13 (2015)CrossRefGoogle Scholar
  5. 5.
    G. Ungureanu, S. Santos, R. Boaventura, C. Botelho, J. Environ. Manage. 151, 326–342 (2015)CrossRefGoogle Scholar
  6. 6.
    A. Alsbaiee, B.J. Smith, L. Xiao, Y. Ling, D.E. Helbling, W.R. Dichtel, Nature, 529, 190–194 (2015)CrossRefGoogle Scholar
  7. 7.
    J. Mao, S. Kim, X.H. Wu, I.-S. Kwak, T. Zhou, Y.-S. Yun, Sep. Purif. Technol. 143, 32–39 (2015)CrossRefGoogle Scholar
  8. 8.
    S. Sikdar, S. Pattanayek, T.K. Ghorai, Adv. Mater. Proc. 2, 107–112 (2017)CrossRefGoogle Scholar
  9. 9.
    A.J.E. Rettie, K.C. Klavetter, J.F. Lin, A. Dolocan, H. Celio, A. Ishiekwene, H.L. Bolton, K.N. Pearson, N.T. Hahn, C.B. Mullins, Chem. Mater. 26, 1670–1677 (2014)CrossRefGoogle Scholar
  10. 10.
    R. Lei, H. Ni, R. Chen, B. Zhang, W. Zhan, Y. Li, J. Mater. Sci.: Mater. Electron. 6, 1–29 (2017)Google Scholar
  11. 11.
    K. Sayama, H. Hayashi, T. Arai, M. Yanagida, T. Gunji, H. Sugihara, Appl. Catal. B 94, 150–157 (2010)CrossRefGoogle Scholar
  12. 12.
    C.A. Bignozzi, S. Caramori, V. Cristino, R. Argazzi, L. Meda, A. Tacca, Chem. Soc. Rev. 42, 2228 (2013)CrossRefGoogle Scholar
  13. 13.
    S. Aravinth, B. Sankar, S.R. Chakravarthi, R. Sarathi, Mater. Charact. 62, 248–255 (2011)CrossRefGoogle Scholar
  14. 14.
    A.G. Berenguer, L.F. Velasco, I.V. Gala, C.O. Ania, J. Colloid Interface Sci. 490, 879–901 (2017)CrossRefGoogle Scholar
  15. 15.
    P. Dong, B. Yang, C. Liu, F. Xu, X. Xi, G. Hou, R. Shao, RSC Adv. 7, 947 (2017)CrossRefGoogle Scholar
  16. 16.
    Y. Zheng, G. Chen, Y. Yu, Y. Zhou, F. He, Appl. Surf. Sci. 362, 182–190 (2016)CrossRefGoogle Scholar
  17. 17.
    A. Biewald, S. Rolinski, H. Lotze-Campen, C. Schmitz, J.P. Dietrich, Ecol. Econ. 101, 43–53 (2014)CrossRefGoogle Scholar
  18. 18.
    M.A. Shannon, P.W. Bohn, M. Elimelech, J.G. Georgiadis, B.J. Marinas, A.M. Mayes, Nature 452, 301–310 (2008)CrossRefGoogle Scholar
  19. 19.
    D.R. Shinde, P.S. Tambade, M.G. Chaskar, K.M. Gadave, Drink. Water Eng. Sci. Discuss. 20, 1–16 (2017)CrossRefGoogle Scholar
  20. 20.
    K. Mondal, Inventions 2, 1–29 (2017)CrossRefGoogle Scholar
  21. 21.
    Y.C. Nah, I. Paramasivam, R. Hahn, N.K. Shrestha, Nanotechnology 21, 105704 (2010)CrossRefGoogle Scholar
  22. 22.
    S. Adhikari, D. Sarkar, RSC Adv. 4, 20145–20153 (2014)CrossRefGoogle Scholar
  23. 23.
    J. Xie, X. Sun, N. Zhang, K. Xu, M. Zhou, Y. Xie, Nano Energy 2, 65–74 (2013)CrossRefGoogle Scholar
  24. 24.
    P. Dong, B. Yang, C. Liu, F. Xu, X. Xi, G. Houa, R. Shao, RSC Adv. 7, 47–956 (2017)CrossRefGoogle Scholar
  25. 25.
    H.G. Choi, Y.H. Jung, D.K. Kim, J. Am. Ceram. Soc. 88, 1684–1686 (2005)CrossRefGoogle Scholar
  26. 26.
    C.Y. Kim, M. Lee, S.H. Huh, E.K. Kim, J. Sol–Gel Sci. Technol. 53, 176–182 (2010)CrossRefGoogle Scholar
  27. 27.
    Y. Zhang, J. Yuan, J. Le, L. Song, X. Hu, Solar Energy Mater. Solar Cells 3, 1338–1344 (2009)CrossRefGoogle Scholar
  28. 28.
    S. Adhikaria, R. Swainb, D. Sarkarb, G. Madras, Mol. Catal. 432, 76–87 (2017)CrossRefGoogle Scholar
  29. 29.
    X. Su, F. Xiao, Y. Li, J. Jian, Q. Sun, J. Wang, Mater. Lett. 64, 1232–1234 (2010)CrossRefGoogle Scholar
  30. 30.
    X.Z. Li, F.B. Li, C.L. Yang, W.K. Ge, J. Photochem. Photobiol. A 141, 209–217 (2001)CrossRefGoogle Scholar
  31. 31.
    S.H. Lee, R. Deshpande, P.A. Parilla, K.M. Jones, B. To, A.H. Mahan, A.C. Dillon, Adv. Mater. 18, 763–766 (2006)CrossRefGoogle Scholar
  32. 32.
    K. Lee, W.S. Seo, J.T. Park, J. Am. Chem. Soc. 125, 3408–3409 (2003)CrossRefGoogle Scholar
  33. 33.
    X.W. Lou, H.C. Zeng, Inorg. Chem. 42, 6169–6171 (2003)CrossRefGoogle Scholar
  34. 34.
    Z. Liu, Y. Bando, C. Tang, Chem. Phys. Lett. 372, 179–182 (2003)CrossRefGoogle Scholar
  35. 35.
    A. Dey, A.K. Mukhopadhyay, S. Gangadharan, M.K. Sinha, J. Therm. Spray Technol. 18, 578 (2009)CrossRefGoogle Scholar
  36. 36.
    M.B. Tahir, G. Nabi, M. Rafique, Int. J. Environ. Sci. Technol. 14, 2519–2542 (2017)Google Scholar
  37. 37.
    P. Dong, G. Hou, X. Xi, R. Shao, Environ. Sci. Nano 3, 1–15 (2017)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • M. B. Tahir
    • 1
  • Ghulam Nabi
    • 1
  • A. Hassan
    • 1
  • T. Iqbal
    • 1
  • H. Kiran
    • 1
  • A. Majid
    • 1
  1. 1.Department of Physics, Faculty of ScienceUniversity of GujratGujratPakistan

Personalised recommendations