Synthesis and Bonding Performance of Conductive Polymer Containing Rare Earth Oxides

  • Chao Du
  • Cui-rong Liu
  • Xu Yin
  • Hao-cheng Zhao


Herein, a conductive polymer material containing rare earth oxide (PEG–LiX–CeO2) was designed and synthesized. The bonding performance of the conductive polymer was analyzed via AC impedance, X-ray diffraction (XRD), infrared spectroscopy (FTIR), scanning electron microscopy (SEM), tensile strength, ball milling and anodic bonding experiments. The AC impedance, XRD and FTIR experiments demonstrate that the introduction of alkali metal lithium salt and cerium oxide (CeO2) can effectively reduce the crystallinity of the composites and increase the ion migration. The results of ball milling show that increasing the milling time (< 10 h) and speed (< 250 r min−1) can improve the conductivity of the composites. The anodic bonding experiment of PEG–LiClO4–CeO2 with AL foil and the SEM characterization of the bonding interface demonstrate the existence of a well-defined bonding layer between the bonding interface.


Anodic bonding Conductive polymer Rare earth oxides Alkali metal ions 



This study was supported by the National Natural Science Foundation of China (Grant No. 51275332).


  1. 1.
    C.M. Ho, Y.C. Tai, Micro-electro-mechanical systems (MEMS) and fluid flows. Annu. Rev. Fluid Mech. 30, 579–612 (1998)CrossRefGoogle Scholar
  2. 2.
    G.D. Wallis, D.I. Pomerantz, Field assisted glass-metal sealing. J, App. Phys. 40, 3946–3948 (1969)CrossRefGoogle Scholar
  3. 3.
    T. Rogers, J. Kowal, Selection of glass, anodic bonding conditions and material compatibility for silicon-glass capacitive sensors. Sensors and Actuators A A46(1–3), 113–120 (1995)CrossRefGoogle Scholar
  4. 4.
    S. Weichel, R. de Reus, S. Bouaidat, P.A. Rasmussen, Low-temperature anodic bonding to silicon nitride. Sensors and Actuators A 82, 249–253 (2000)CrossRefGoogle Scholar
  5. 5.
    Y.T. Cheng, L. Lin, K. Najafi, A hermetic glass-silicon package formed using localized aluminum/silicon-glass bonding. J. Microelectromech. Syst. 10(3), 392–399 (2001)CrossRefGoogle Scholar
  6. 6.
    N. Gao, Z.G. Chen, S.T. Wang, X.L. Sui, D.D. Gu, Research on PEI-PEO based solid state polymer electrolyte. J. Harbin Inst. Technol. 43, 654–659 (2011)Google Scholar
  7. 7.
    S.T. Ren, H.F. Chang, T. Zheng et al., Synthesis of HBPS-PEO multi-arm star polymer electrolytes and their ionic conductivity. Acta Polym. Sin. 20(8), 1064–1071 (2013)Google Scholar
  8. 8.
    D.H. Xiong, J.S. Cheng, H. Li, W. Deng, K. Ye, Anodic bonding of glass–ceramics to stainless steel coated with intermediate SiO2 layer. Microelectron. Eng 87, 1741–1746 (2010)CrossRefGoogle Scholar
  9. 9.
    N. Voigt, L. van Wullen, The effect of plastic-crystalline succinonitrile on the electrolyte system PEO:LiB4: insights from solid state NMR. Solid State Ion. 260, 65–75 (2014)CrossRefGoogle Scholar
  10. 10.
    M. Despont, H. Gross, Fabrication of a silicon-Pyrex-silicon stack by a.c. anodic bonding. Sensors and Actuators A 55, 219–224 (1996)CrossRefGoogle Scholar
  11. 11.
    U. Kreissig, S. Grigull, K. Lange, nuclear instruments and methods in physics research B Sect. B Beam Interact. Mater. Atoms 136–138, 674–679 (1998)Google Scholar
  12. 12.
    T.J. Singh, S.V. Bhat, Increased lithium-ion conductivity in (PEG)46LiClO4 solid polymer electrolyte with Al2O3 nanoparticles. J. Power Sources 129, 280–287 (2004)CrossRefGoogle Scholar
  13. 13.
    H.Y. Sung, Y.Y. Wang, C.C. Wan, Preparation and characterization of poly(vinyl chloride-co-vinyl acetate)-based gel electrolytes for Li-ion batteries. J. Electrochem. Soc. 145(4–5), 1207–1211 (1998)Google Scholar
  14. 14.
    M. Watanabe, M. Togo, K. Sanui, et al., Ionic conductivity of polymer complexes by poly(β-propiolactone) and lithium perchlorate. Macromolecules 17, 2908–2912 (1984)CrossRefGoogle Scholar
  15. 15.
    S. Jiang, D. Yh, X. Ji, et al., Confined crystallization behavior of PEO in silica networks. Polymer 41(6), 2041–2046 (2000)CrossRefGoogle Scholar
  16. 16.
    P.P. Chu, M.J. Redfy, H.M. Kao, Novel composite polymer electrolyte comprising mesoporous structured SiO2 and PEO/Li. Solid State Ion. 156(1–2), 141–153 (2003)CrossRefGoogle Scholar
  17. 17.
    Q. Meng, K. Cai, Y. Chen, et al., Research progress on conducting polymer based supercapacitor electrode materials. Nano Energy 36, 268–285 (2017)CrossRefGoogle Scholar
  18. 18.
    D.W. Shin, M.D. Guiver, Y.M. Lee, Hydrocarbon-based polymer electrolyte membranes: importance of morphology on ion transport and membrane stability. Chem. Rev. 117(6), 4759–4805 (2017)CrossRefGoogle Scholar
  19. 19.
    A.H. Khan, S. Ghosh, B. Pradhan et al., Two-dimensional (2D) nanomaterials towards electrochemical nanoarchitectonics in energy-related applications. Bull. Chem. Soc. Jpn. 90(6), 627–648 (2017)CrossRefGoogle Scholar
  20. 20.
    H.M. Shiri, A. Ehsani, A novel and facile route for the electrosynthesis of Ho2O3 nanoparticles and its nanocomposite with p-type conductive polymer: characterisation and electrochemical performance. Bull. Chem. Soc. Jpn. 89(10), 1201–1206 (2016)CrossRefGoogle Scholar
  21. 21.
    S. Weichel, R. Reus, S. Bousidat et al., Low-temperature anodic bonding to silicon nitride. Sensors and Actuators A 82, 249–253 (2000)CrossRefGoogle Scholar
  22. 22.
    D.E. Fenton, J.M. Parker, P.V. Wright, Complexes of alkali metal ions with poly(ethylene oxide). Polymer 14(11), 589 (1973)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Tai Yuan University of Science and TechnologyTaiyuanChina

Personalised recommendations