Advertisement

Synthesis Characterization, Antimicrobial, Antioxidant, and Cytotoxic Activities of ZnO Nanorods on Reduced Graphene Oxide

  • R. Rajeswari
  • H. Gurumallesh Prabu
Article

Abstract

Zinc oxide (ZnO) nanorods decorated on reduced graphene oxide (RGO) nanocomposite was synthesized by one-pot hydrothermal synthesis. The morphology and the properties of the synthesized RGO–ZnO composites were characterized by XRD, FT-IR, Raman spectroscopy, FE-SEM-EDAX, HR-TEM, UV–Vis spectroscopy, and X-ray photo spectroscopy techniques. The antimicrobial properties of the graphene nanocomposite were examined against four different pathogens by agar well diffusion method, and antioxidant properties of the same were examined by four different free radical scavenging assays. It possessed no toxic effects on HEK293 Human embryonic kidney cell line. The synergistic effects between ZnO nanorods and RGO sheets enhanced the antimicrobial and antioxidant properties of the composite. The zinc ions in the solution dispersed on the RGO sheets enabled the intimate contact with microbes and induced the microbes to death. The results state that the RGO–ZnO nanocomposite exhibited remarkably enhanced antimicrobial efficacy and excellent cytotoxic property. The prepared RGO–ZnO nanocomposite was considered as a potent candidate for antibacterial and antioxidant activity.

Graphical Abstract

Keywords

RGO–ZnO Nanocomposite Hydrothermal Antimicrobial Anti antioxidant 

Notes

Acknowledgements

The authors express their gratitude to the Professor and Head, Department of Industrial Chemistry for enabling the HR-SEM analysis and the School of Physics, Alagappa University, Karaikudi, Tamil Nadu, India for the provision of XRD, and Raman analysis.

Compliance with Ethical Standards

Conflict of interest

The authors indicate no potential conflicts of interest.

References

  1. 1.
    J. Yip, L.W. Liu, K.H. Wong, P.H.M. Leung, C.W.M. Yuen, M.C. Cheung, Investigation of antifungal and antibacterial effects of fabric padded with highly stable selenium nanoparticles. J. Appl. Polym. Sci. 131, 8886–8893 (2014)CrossRefGoogle Scholar
  2. 2.
    A.K. Geim, Graphene: status and prospects. Science 324, 1530–1534 (2009)CrossRefGoogle Scholar
  3. 3.
    C.N.R. Rao, A.K. Sood, K.S. Subrahmanyam, A. Govindaraj, Graphene: the new two-dimensional nanomaterial. Nanomaterials, 48, 7752–7777 (2009)Google Scholar
  4. 4.
    K.S. Novoselov, A.K. Geim,.S.V. Morozov, D. Jiang, Y. Zhang,.S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field Effect in atomically thin carbon films. Science 306, 666–669 (2004)CrossRefGoogle Scholar
  5. 5.
    Q. Wu, Z. Xu, Y. Yao, A. Liu, G. Shi, Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. ACS Nano. 4, 1963–1970 (2010)CrossRefGoogle Scholar
  6. 6.
    W. Bao, G. Liu, Z. Zhao, H. Zhang, D. Yan, A. Deshpande, B. LeRoy, C.N. Lau, Lithography-free fabrication of high quality substrate-supported and freestanding graphene devices. Nano Res. 3, 98–102 (2010)CrossRefGoogle Scholar
  7. 7.
    D. Wang, D. Choi, J. Li, Z. Yang, Z. Nie, R. Kou, D. Hu, C. Wang, L. Saraf, V.J. Zhang, I. Aksay, A. Liu, Self-assembled TiO2–graphene hybrid nanostructures for enhanced li-ion insertion. ACS Nano 3, 907–914 (2009)CrossRefGoogle Scholar
  8. 8.
    J.I. Paredes, S. Villar-Rodil, A. Martínez-Alonso, J.M.D. Tascon Graphene oxide dispersions in organic solvents. Langmuir 24, 10560–10564 (2008)CrossRefGoogle Scholar
  9. 9.
    G. Williams, B. Seger, P.V. Kamat, TiO2—graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2, 1487–1491 (2008)CrossRefGoogle Scholar
  10. 10.
    C. Xu, X. Wang, L. Yang, Y. Wu, Fabrication of a graphene-cuprous oxide composite. J. Solid State Chem. 182, 2486–2490 (2009)CrossRefGoogle Scholar
  11. 11.
    N.T. Hu, Y.Y. Wang, J. Chai, R.G. Gao, Z. Yang, W.E.S. Kong, Y.F. Zhang, Gas sensor based on p-phenylenediamine reduced graphene oxide. Sens. Actuators B 163, 107–114 (2012)CrossRefGoogle Scholar
  12. 12.
    J.C. Lin, B.R. Huang, T.C. Lin, Hybrid structure of graphene sheets/ ZnO nanorods for enhancing electron field emission properties. Appl. Surf. Sci. 289, 384–387 (2014)CrossRefGoogle Scholar
  13. 13.
    B. Jaleh, A. Jabbari, Evaluation of reduced graphene oxide/ZnO effect on properties of PVDF nanocomposite films. Appl. Surf. Sci. 320, 339–347 (2014)CrossRefGoogle Scholar
  14. 14.
    Q. Xiang, J. Yu, M. Jaroniec, Graphene-based semiconductor photocatalysts. Chem. Soc. Rev. 41, 782–796 (2012)CrossRefGoogle Scholar
  15. 15.
    B. Seger, P.V. Kamat, Electrocatalytically active graphene-platinum nanocomposites. Role of 2-D carbon support in PEM fuel cells. J. Phys. Chem. C 113, 7990–7995 (2009)CrossRefGoogle Scholar
  16. 16.
    M.H. Huang, S. Mao, H. Feick, H.Q. Yan, Y. Wu, H. Kind,.E. Weber, R. Russo, P. Yang, Room-temperature ultraviolet. Nanowire Nano. Sci. 292, 1897–1899 (2001)Google Scholar
  17. 17.
    J.C. Che, C.T. Tang, Preparation and application of granular ZnO/Al2O3 catalyst for the removal of hazardous trichloroethylene. J. Hazard. Mat. 142, 88–96 (2007)CrossRefGoogle Scholar
  18. 18.
    Z.L. Wang, Functional oxide nanobelts: materials, properties and potential applications is nanosystems and biotechnology. Annu. Rev. Phys. Chem. 55, 159–196 (2004)CrossRefGoogle Scholar
  19. 19.
    J. Sawai, Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay. J. Microbiol. Methods 54, 177–182 (2003)CrossRefGoogle Scholar
  20. 20.
    S.H. Choi, Y.P. Zhang, A. Gopalan, K.P. Lee, H.D. Kang, Preparation of catalytically efficient precious metallic colloids by γ-irradiation and characterization. Colloids Surfaces A 256, 165–170 (2005)CrossRefGoogle Scholar
  21. 21.
    K.R. Raghupathi, R.T. Koodali, A.C. Manna, Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticle. Langmuir 27, 4020–4028 (2011)CrossRefGoogle Scholar
  22. 22.
    A. Azam, A.S. Ahmed, M. Oves, M.S. Khan, S.S. Habib, A. Memic, Antimicrobial activity of metal oxide nanoparticles against gram-positive and gram-negative bacteria: a comparative study. Int. J. Nanomed. 7, 6003–6009 (2012)CrossRefGoogle Scholar
  23. 23.
    H. Ma, P.L. Williams, S.A. Diamond, Ecotoxicity of manufactured ZnO nanoparticlesA review. Environ. Pollut. 172, 76–85 (2013)CrossRefGoogle Scholar
  24. 24.
    L. Zhang, Y. Jiang, Y. Ding, M. Povey, D. York, Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J. Nanopart. Res. 9, 479–489 (2007)CrossRefGoogle Scholar
  25. 25.
    K.M. Kumar, B.K. Mandal, E.A. Naidu, M. Sinha, K.S. Kumar, P.S. Reddy, Synthesis and characterisation of flower shaped zinc oxide nanostructures and its antimicrobial activity. Spectrochimica Acta A 104, 171–174 (2013)CrossRefGoogle Scholar
  26. 26.
    A. Lipovsky, Y. Nitzan, A. Gedanken, R. Lubart, Antifungal activity of ZnO nanoparticles-the role of ROS mediated cell injury. Nanotechnology 22, 101–105 (2011)CrossRefGoogle Scholar
  27. 27.
    S. Vlad, C. Tanase, D. Macocinschi, C. Ciobanu, T. Balaes, D. Filip, D. Gostin, L.M. Gradinaru, Digest J. Nanomater. Biostruct. 7, 51–58 (2012)Google Scholar
  28. 28.
    J. You, Y. Zhang, Z. Hu, Bacteria and bacteriophage inactivation by silver and zinc oxide nanoparticles. Colloids Surf. 85, 161–167 (2011)CrossRefGoogle Scholar
  29. 29.
    M. Premanathan, K. Karthikeyan, K. Jeyasubramanian, G. Manivannan, Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation. Nanotechnol. Biol. Med. 7, 184–192 (2012)CrossRefGoogle Scholar
  30. 30.
    J. Sawai, T. Yoshikawa, Quantitative evaluation of antifungal activity of metallic oxide powders (MgO, CaO and ZnO) by an indirect conductimetric assay. J. Appl. Microbiol. 96, (803–809) (2004)CrossRefGoogle Scholar
  31. 31.
    P.K. Stoimenov, R.L. Klinger, G.L. Marchin, K.J. Klabunde, Metal oxide nanoparticles as bactericidal agents. Langmuir 18, 6679–6686 (2002)CrossRefGoogle Scholar
  32. 32.
    R. Brayner, R. Ferrari-Iliou, N. Brivois, S. Djediat, M. Benedetti, F. Fievet, Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett. 6, 866–870 (2006)CrossRefGoogle Scholar
  33. 33.
    Z. Huang, Xu.. Zheng,.D. Yan, G. Yin,. X. Liao, Y. Kang, Y. Yao,. D. Huang, B. Hao, Toxicological effect of ZnO nanoparticles based on bacteria. Langmuir 24, 4140–4144 (2008)CrossRefGoogle Scholar
  34. 34.
    A. Kahru, H.C. Dubourguier, I. Blinova, A. Ivask, K. Kasemets, Biotests and biosensors for ecotoxicology of metal oxide nanoparticles: a minireview. Sensors 8, 5153–5170 (2008)CrossRefGoogle Scholar
  35. 35.
    O. Akhavan, E. Ghaderi, Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano 4, 5731–5736 (2010)CrossRefGoogle Scholar
  36. 36.
    H Wenbing, P. Cheng, L. Weijie, H. Qing, F. Chunhai, L. Min, L. Xiaoming, Graphene-based antibacterial paper. Acs Nano 4, 4317–4323 (2010)CrossRefGoogle Scholar
  37. 37.
    Y. Chang, S.T. Yang, J.H. Liu, E. Dong, Y.W. Wang, A. Cao, Y. Liu, H. Wang, In vitro toxicity evaluation of graphene oxide on A549 cells, Toxicol. Lett. 200, 201–210 (2011)CrossRefGoogle Scholar
  38. 38.
    A. Lukowiak, bA. Kedziora, W. Strek, Antimicrobial graphene family materials: progress, advances, hopes and fears. Adv. Colloid Interface Sci. 236, 101–112 (2016)CrossRefGoogle Scholar
  39. 39.
    N.W. Pu, C.A. Wang, Y. Sung, Y.M. Liu, M.D. Ger, Production of few-layer graphene by supercritical CO2 exfoliation of graphite. Mater. Lett. 63, 1987–1989 (2009)CrossRefGoogle Scholar
  40. 40.
    C.Y. Kong, W.L. Song, M.J. Meziani, K.N. Tackett, L. Cao, A.J. Farr, A. Anderson, Y.P. Sun, Supercritical fluid conversion of graphene oxides. J. Supercrit. Fluids 61, 206–211 (2012)CrossRefGoogle Scholar
  41. 41.
    S. Bykkam, S. Narsingam, M. Ahmadipour, T. Dayakar, K. Venkateswara Rao, C. Shilpa Chakra, S. Kalakotla, Few layered graphene Sheet decorated by ZnO Nanoparticles for Anti-Bacterial. Appl. Superlattices Microstruct. 83, 776–784 (2015)CrossRefGoogle Scholar
  42. 42.
    A.R. Chowdhuri, S. Tripathy, S. Chandra, S. Roy, S.K. Sahu, A ZnO decorated chitosan-graphene oxide nanocomposite shows significantly enhanced antimicrobial activity with ros generation. RSC Adv. 5, 49420–49428 (2015)CrossRefGoogle Scholar
  43. 43.
    C.H. Chen, Y.F. Dai, Effect of chitosan on interfacial polymerization of aniline. Carbohydr. Polym. 84, 840–843 (2011)CrossRefGoogle Scholar
  44. 44.
    W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958)CrossRefGoogle Scholar
  45. 45.
    K. Karthikeyan, R. Mohan, S.J. Kim, Graphene oxide as a photocatalytic material. Appl. Phys. Lett. 98, 244101–244103 (2011)CrossRefGoogle Scholar
  46. 46.
    A.V. Badarinath, K.M. Rao, C.M.S. Chetty, V. Ramkanth, T.V.S. Rajan, K. Gnanaprakash, A review on in-vitro antioxidant methods: comparisions, correlations and considerations. Int. J. PharmTech Res. 2, 1276–1285 (2010)Google Scholar
  47. 47.
    D. Menaga, S. Rajakumar, P.M. Ayyasamy, Free radical scavenging activity of methanolic extract of pleurotus florida mushroom. Int. J. Pharm. Pharm. Sci. 5, 0975–1491 (2013)Google Scholar
  48. 48.
    R.J. Ruch, S.J. Cheng, E. Klaunig, Prevention of cytotoxicity and inhibition of intercellular communication by antioxidant catechins isolated from Chinese green tea. Carcinogenesis. 10, 1003–1008 (1989)CrossRefGoogle Scholar
  49. 49.
    G. Kaur, V. Gupta, P. Bansal, Innate antioxidant activity of some traditional formulations. J. Adv. Pharm. Technol. Res. 8, 39–42 (2017)CrossRefGoogle Scholar
  50. 50.
    C. Sousa, P. Valentao, F.R. Ferreres, M. Seabra, P.B. Andrade, Tronchuda Cabbage (Brassica oleracea L. var. costata DC): Scavenger of reactive nitrogen species. J. Agric. Food. Chem. 56, 4205–4211 (2008)CrossRefGoogle Scholar
  51. 51.
    L. Zhang, G. Du, B. Zhou, L. Wang, Green synthesis of flower-like ZnO decorated reduced graphene oxide composites. Ceram. Int. 40, 1241–1244 (2014)CrossRefGoogle Scholar
  52. 52.
    X. Qin, Y. Zhang, N. Xue, P. Kittiwattanothai, N. Kongsittikul, N. Rodthongkum, S. Limpanart, M. Ma, L. Riping, A facile synthesis of nanorods of ZnO/graphene oxide composites with enhanced photocatalytic activity. Appl. Surf. Sci. 321, 226–232 (2014)CrossRefGoogle Scholar
  53. 53.
    B. Jiang, C. Tian, Q. Pan, Z. Jiang, J.Q. Wang, W. Yan, H. Fu, Enhanced photocatalytic activity and electron transfer mechanisms of graphene/TiO2 with exposed {001} facets. J. Phys. Chem. C 115, 23718–23725 (2011)CrossRefGoogle Scholar
  54. 54.
    A. Mihranyan, A.P. Llagostera, R. Karmhag, M. Strømme, Moisture sorption by cellulose powders of varying crystallinity. Int. J. Pharm. 269, 433–442 (2004)CrossRefGoogle Scholar
  55. 55.
    K. Zhou, Y. Zhu, X. Yang, X. Jiang, C. Li, Preparation of graphene–TiO2 composites with enhanced photocatalytic activity. New J. Chem. 35, 353–359 (2011)CrossRefGoogle Scholar
  56. 56.
    Y. Zhang, C. Pan, TiO /graphene composite from thermal reaction of graphene oxide and its photocatalytic activity in visible light. J. Mater. Sci. 46, 2622–2626 (2011)CrossRefGoogle Scholar
  57. 57.
    J. Shen, M. Shi, B. Yan, H. Ma, N. Li, M. Ye, Ionic liquid-assisted one-step hydrothermal synthesis of TiO2-reduced graphene oxide composites. Nano Res. 4, 795–806 (2011)CrossRefGoogle Scholar
  58. 58.
    A. Kaschner, U. Haboeck, M. Strassburg, M. Strassburg, G. Kaczmarczyk, A. Hoffmann, C. Thomsen, A. Zeuner, H.R. Alves, D.M. Hofmann, B.K. Meyer, Appl. Phys. Lett. 80, 1909–1911 (2002)CrossRefGoogle Scholar
  59. 59.
    O. Yamamoto, J. Sawai, T. Sasamoto, Change in antibacterial characteristics with doping amount of ZnO in MgO–ZnO solid solution. J. Inorg. Mater. 2, 451–454 (2000)CrossRefGoogle Scholar
  60. 60.
    L. Zhang, Y. Ding, M. Povey, D. York, ZnO nanofluids—A potential antibacterial agent. Prog. Nat. Sci. 18, 939–944 (2008)CrossRefGoogle Scholar
  61. 61.
    R. Hariharan, S. Senthilkumar, A. Suganthi, M. Rajarajan, Synthesis and characterization of doxorubicin modified ZnO/PEG nanomaterials and its photodynamic action. J. Photochem. Photobiol B 116, 56–65 (2012)CrossRefGoogle Scholar
  62. 62.
    O. Yamamoto, M. Hotta, J. Sawai, T. Sasamoto, H. Kojima, Antifungal characteristics of spherical carbon materials with zinc oxide. J. Ceram. Soc. Jpn. 111, 8, 614–616 (2003)CrossRefGoogle Scholar
  63. 63.
    P. Dibrov, J. Dzioba, K.K. Gosink, C.C. Hase, Chemiosmotic mechanism of antimicrobial activity of Ag + in Vibrio cholera. Chemotherapy 46, 2668–2670 (2002)Google Scholar
  64. 64.
    G.H. Naik, K.I. Priyadarsini, J.G. Satav, M.M. Banavalikar, D.P. Sohoni, M.K. Biyani, H. Mohan, Comparative antioxidant activity of individual herbal components used in Ayurvedic medicine. Phytochemistry. 63, 97–104 (2003)CrossRefGoogle Scholar
  65. 65.
    J. Pal, S. Ganguly, K.S. Tahsin, K. Acharya, In vitro free radical scavenging activity of wild edible mushroom, Pleurotus squarrosulus (Mont.) Singer. Indian J. Exp. Biol. 47, 1210–1218 (2010)Google Scholar
  66. 66.
    J.P. Saikia, S. Paul, B.K. Konwar, S.K. Samdarshi, Nickel oxide nanoparticles: a novel antioxidant. Colloids Surf. B 78, 146–148 (2010)CrossRefGoogle Scholar
  67. 67.
    J. Wang, X.Z. Yuan, Y. Jin, H. Tian, Song, Free radical and reactive oxygen species scavenging activities of peanut skins extract. Food. Chem. 104, 242–250 (2007)CrossRefGoogle Scholar
  68. 68.
    A. Kumaran, R.J. Karunakaran, In vitro antioxidant activities of methanol extracts of five Phyllanthus species from India. LWT 40, 344–352 (2007)CrossRefGoogle Scholar
  69. 69.
    J. Sawai, R. Doi, Y. Maekawa, T. Yoshikawa, H. Kojima, Indirect conductimetric assay of antibacterial activities. J. Ind. Microbiol. Biotechnol. 29, 296–298 (2002)CrossRefGoogle Scholar
  70. 70.
    Y.N. Chang, M. Zhang, L. Xia, J. Zhang, G. Xing, The toxic effects and mechanisms of CuO and ZnO. Nanoparticles Mater. 5, 2850–2871 (2012)Google Scholar
  71. 71.
    S.H. Hu, Y.W. Chen, W.T. Hung, I.W. Chen, S.-Y. Chen, Quantum-dot-tagged reduced graphene oxide nanocomposites for bright fluorescence bioimaging and photothermal therapy monitored in situ. Adv. Mater. 24, 1748–1754 (2012)CrossRefGoogle Scholar
  72. 72.
    H. Chen, M.B. Muller, K.J. Gilmore, G.G. Wallace, D. Li, Mechanically Strong, electrically conductive, and biocompatible graphene paper. Adv. Mater. 20, 3557–3561 (2008)CrossRefGoogle Scholar
  73. 73.
    H. Hong, J. Shi, Y. Yang, Y. Zhang, J.W. Engle, R.J. Nickles, X. Wang, W. Cai, Cancer-targeted optical imaging with fluorescent zinc oxide nanowires. Nano Lett. 11, 3744–3750 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Industrial Chemistry, School of Chemical SciencesAlagappa UniversityKaraikudiIndia

Personalised recommendations