Dielectric Investigation of NaLiS Nanoparticles Loaded on Alginate Polymer Matrix Synthesized by Single Pot Microwave Irradiation

Article
  • 25 Downloads

Abstract

Sodium lithium sulfide (NaLiS) nanocomposite have been successfully synthesized by using microwave-irradiation (MWI) method. The study suggested that the application of microwave heating is to produce homogeneous and fine NaLiS nanocomposite which were achieved by using the precursors of lithium acetate and thioacetamide in the presence of sodium alginate biopolymer. FTIR is used to identify the structural coordination and functional groups of the prepared nanocomposite. The structural property of NaLiS particles was investigated by XRD. The surface morphology and elemental composition of synthesized material was confirmed by SEM and EDX analyses. The optical property was studied by using UV–Vis spectrophotometer. Thermal stability of as prepared sample was studied by TGA/DTG analysis. Electrical transport studies of the prepared nanocomposite have been analyzed for various temperatures. NaLiS nanocomposite has ionic conductivity of ~ 10−7 S cm−1 at 35 °C which is six orders of magnitude higher than that of micro sized bulk Li2S (~ 10−13 S cm−1).

Keywords

NaLiS Nanocomposite Microwave-irradiation Sodium alginate Impedance analysis Conductivity 

References

  1. 1.
    B. Choudhuri, A. Mondal, S. Murli, M.D. Dwivedi, M. Henini, J. Alloys Compd. 712, 7 (2017)CrossRefGoogle Scholar
  2. 2.
    C. Sasikala, N. Durairaj, I. Baskaran, B. Sathyaseelan, M. Henini, E. Manikandan, J. Alloys Compd. 712, 870 (2017)CrossRefGoogle Scholar
  3. 3.
    K. Thanigai Arul, E. Manikandan, P.P. Murmu, J. Kennedy, M. Henini, J. Alloys Compd. 720, 395 (2017)CrossRefGoogle Scholar
  4. 4.
    B. Sathyaseelan, E. Manikandan, I. Baskaran, K. Senthilnathan, K. Sivakumar, M.K. Moodley, R. Ladchumananandasivam, M. Maaza, J. Alloys Compd. 694, 556 (2017)CrossRefGoogle Scholar
  5. 5.
    B. Sathyaseelan, E. Manikandan, K. Sivakumar, J. Kennedy, M. Maaza, J. Alloys Compd. 651, 479 (2015)CrossRefGoogle Scholar
  6. 6.
    P. Couture, G.V.M. Williams, J. Kennedy, J. Leveneur, P.P. Murmu, S.V. Chong, S. Rubanov, J. Alloys Compd. 695, 3061 (2017)CrossRefGoogle Scholar
  7. 7.
    T. Prakash, G.V.M. Williams, J. Kennedy, S. Rubanov, J. Alloys Compd. 667, 255 (2016)CrossRefGoogle Scholar
  8. 8.
    J. Kennedy, A. Markwitz, Z. Li, W. Gao, C. Kendrick, S.M. Durbin, R. Reeves, Curr. Appl. Phys. 6, 495 (2006)CrossRefGoogle Scholar
  9. 9.
    J. Kennedy, P.P. Murmu, J. Leveneur, A. Markwitz, J. Futter, Appl. Surf. Sci. 367, 52 (2016)CrossRefGoogle Scholar
  10. 10.
    E. Manikandan, G. Kavitha, J. Kennedy, Ceram. Int. 40, 16065 (2014)CrossRefGoogle Scholar
  11. 11.
    J. Kennedy, P.P. Murmu, E. Manikandan, S.Y. Lee, J. Alloys Compd. 616, 614 (2014)CrossRefGoogle Scholar
  12. 12.
    F. Fang, J. Kennedy, J. Futter, T. Hopf, A. Markwitz, E. Manikandan, G. Henshaw, Nanotech 22, 335702 (2011)CrossRefGoogle Scholar
  13. 13.
    E. Manikandan, V. Murugan, G. Kavitha, P. Babu, M. Maaza, Mater. Lett. 131, 225 (2014)CrossRefGoogle Scholar
  14. 14.
    J. Kennedy, P.P. Murmu, P.S. Gupta, D.A. Carder, S.V. Chong, J. Leveneur, S. Rubanov, Mat. Sci. Sem. Pro. 26, 56 (2014)Google Scholar
  15. 15.
    M. Eom, S. Son, C. Park, S. Noh, W.T. Nichols, D. Shin, Electrochim. Acta 230, 279 (2017)CrossRefGoogle Scholar
  16. 16.
    B. Dunn, H. Kamath, J.M. Tarascon, Science 334, 928 (2011)CrossRefGoogle Scholar
  17. 17.
    P.G. Bruce, S.A. Freunberger, L.J. Hardwick, J.M. Tarascon, Nat. Mater. 11, 19 (2012)CrossRefGoogle Scholar
  18. 18.
    A. Manthiram, Y. Fu, Y.S. Su, Acc. Chem. Res. 46, 1125 (2013)CrossRefGoogle Scholar
  19. 19.
    J. Hassouna, Y.K. Sunb, B. Scrosatia, J. Power Sources 196(1), 343 (2011)CrossRefGoogle Scholar
  20. 20.
    J. Hassoun, B. Scrosati, Angew. Chem. Int. Ed. 49, 2371 (2010)CrossRefGoogle Scholar
  21. 21.
    M. Hagen, E.Q. González, S. Dorfler, G. Fahrer, J. Tubke, M.J. Hoffmann, H. Althues, R. Speck, M. Krampfert, S. Kaskel, H. Föll, J. Power Sources, 248, 1058 (2014)CrossRefGoogle Scholar
  22. 22.
    Z.W. Seh, W. Li, J.J. Cha, G. Zheng, Y. Yang, M.T. McDowell, P.C. Hsu, Y. Cui, Nat. Commun. 4, 1331 (2013)CrossRefGoogle Scholar
  23. 23.
    X. He, J. Ren, L. Wang, W. Pu, C. Jiang, C. Wan, J. Power Sources 190, 154 (2009)CrossRefGoogle Scholar
  24. 24.
    K. Cai, M.K. Song, E.J. Cairns, Y. Zhang, Nano Lett. 12, 6474 (2012)CrossRefGoogle Scholar
  25. 25.
    Y. Yang, M.T. McDowell, A. Jackson, J.J. Cha, S.S. Hong, Y. Cui, Nano Lett. 10, 1486 (2010)CrossRefGoogle Scholar
  26. 26.
    L. Suo, Y.S. Hu, H. Li, M. Armand, L. Chen, Nat. Commun. 4, 1481 (2013)CrossRefGoogle Scholar
  27. 27.
    J. He, Y. Chen, W. Lv, K. Wen, C. Xu, W. Zhang, Y. Li, W. Qin, W. He, ACS Nano 10(12), 10981 (2016)CrossRefGoogle Scholar
  28. 28.
    C. Wang, X. Wang, Y. Yang, A. Kushima, J. Chen, Y. Huang, J. Li, Nano Lett. 15(3), 1796 (2015)CrossRefGoogle Scholar
  29. 29.
    L. Wang, Y.W.Y. Xia, Energy Environ. Sci. 8, 1551 (2015)CrossRefGoogle Scholar
  30. 30.
    L. Sun, D. Wang, Y. Luo, K. Wang, W. Kong, Y. Wu, L. Zhang, K. Jiang, Q. Li, Y. Zhang, J. Wang, S. Fan, ACS Nano 10(1), 1300 (2016)CrossRefGoogle Scholar
  31. 31.
    Z. Yang, J. Guo, S.K. Das, Y. Yu, Z. Zhou, H.D. Abruna, L.A. Archer, J. Mater. Chem. A 1, 1433 (2013)CrossRefGoogle Scholar
  32. 32.
    G.T. Zhou, O. Palchik, V.G. Pol, E. Sominski, Y. Koltypin, A. Gedanken, J. Mater. Chem. 13, 2607 (2003)CrossRefGoogle Scholar
  33. 33.
    H.L. Cao, Q. Gong, X.F. Qian, H.L. Wang, J.T. Zai, Z.K. Zhu, Cryst. Growth Des. 7, 425 (2007)CrossRefGoogle Scholar
  34. 34.
    Q.Z. Yao, G. Jin, G.T. Zhou, Mater. Chem. Phys. 109, 164 (2008)CrossRefGoogle Scholar
  35. 35.
    T. Druzhinina, S. Hoeppener, U.S. Schubert, Adv. Funct. Mater. 19, 2819 (2009)CrossRefGoogle Scholar
  36. 36.
    E. Fourest, B. Volesky, Environ. Sci. Technol. 30(1), 277 (1995)CrossRefGoogle Scholar
  37. 37.
    D. Fang, Y. Liu, S. Jiang, J. Nie, G. Ma, Carbohydr. Polym. 85, 276 (2011)CrossRefGoogle Scholar
  38. 38.
    S. Parani, E. Prabakaran, M. Alexander, B.S. Lakshmi, K. Pandian, Bull. Korean Chem. Soc. 33, 10 (2012)Google Scholar
  39. 39.
    C. Sartori, D.S. Finch, B. Ralph, Polymer 38, 43 (1997)CrossRefGoogle Scholar
  40. 40.
    K. Sakugawa, A. Ikeda, A. Takemura, H. Ono, J. Appl. Polym. Sci. 93, 1372 (2004)CrossRefGoogle Scholar
  41. 41.
    P. Premlata, R. Bipul, P.S. Sankar, Indian J. Pure Appl. Phys. 47, 804 (2009)Google Scholar
  42. 42.
    H. Wang, P. Fang, Z. Chen, S. Wang, Appl. Surf. Sci. 253, 8495 (2007)CrossRefGoogle Scholar
  43. 43.
    R.J. Klein, S. Zhang, S. Dou, B.H. Jones, R.H. Colby, J. Runt, J. Chem. Phys. 124, 144903 (2006)CrossRefGoogle Scholar
  44. 44.
    A. Chandra, A. Chandra, K. Thakur, Electrochim. Acta 30(2), 81 (2012)CrossRefGoogle Scholar
  45. 45.
    D. Vanitha, S.A. Bahadur, N. Nallamuthu, S. Athimoolam, A. Manikandan, J. Inorg. Organomet. Polym. 27, 257 (2017)CrossRefGoogle Scholar
  46. 46.
    D. Vanitha, S.A. Bahadur, N. Nallamuthu, S. Athimoolam, A. Manikandan, J. Inorg. Organomet. Polym. 27, 363 (2017)CrossRefGoogle Scholar
  47. 47.
    V. Parameswaran, N. Nallamuthu, P. Devendran, E.R. Nagarajan, A. Manikandan, Phys. B 515, 89 (2017)CrossRefGoogle Scholar
  48. 48.
    Z. Lin, Z. Liu, N.J. Dudney, C. Liang, ACS Nano 7(3), 2829 (2013)CrossRefGoogle Scholar
  49. 49.
    T. Shekharam, V.L. Rao, G. Yellaiah, T. Mohan Kumar, M. Nagubhushanam, J. Alloys Compd. 617, 952 (2014)CrossRefGoogle Scholar
  50. 50.
    I.M. Hodge, M.D. Ingram, A.R. West, J. Electroanal. Chem. 74, 125 (1976)CrossRefGoogle Scholar
  51. 51.
    G. Yellaiah, T. Shekharam, K. Hadasa, M. Nagabhushanam, J. Alloys Compd. 609, 192 (2014)CrossRefGoogle Scholar
  52. 52.
    D.C. Onwudiwe, T. Arfin, C.A. Strydom, Electrochim. Acta 116, 217 (2014)CrossRefGoogle Scholar
  53. 53.
    R. Gerhardt, J. Phys. Chem. Solids 55(12), 1491 (1994)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Physics, International Research Centre (IRC)Kalasalingam UniversityKrishnankoilIndia
  2. 2.Department of Chemistry, Bharath Institute of Higher Education and ResearchBharath UniversityChennaiIndia

Personalised recommendations