Preparation of Co3O4 Nanoparticles via Thermal Decomposition of Three New Supramolecular Structures of Co(II) and (III) Containing 4′-Hydroxy-2,2′:6′,2′′-Terpyridine: Crystal Structures and Thermal Analysis Studies

  • Badri Z. MomeniEmail author
  • Farzaneh Rahimi
  • Frank Rominger


Three cobalt(II) and (III) complexes based on the 4′-hydroxy-2,2′:6′,2"-terpyridine (tpyOH) have been synthesized and structurally characterized by X-ray crystallography. The reaction of tpyOH with CoCl2·6H2O in a mixture of methanol/CH2Cl2 resulted in the formation of the new complex [CoIICl2(tpyOH)] (1). On the other hand, the reaction of CoCl2·6H2O with tpyOH in a 2:1 or 1:1 mol ratio in methanol under reflux condition affords the new complexes [CoIII(tpyOH)(tpyO)][CoIICl4]·H2O (2) and [CoIIICl2(H2O)(tpyO)]·H2O (3), respectively. Moreover, the treatment of a methanolic solution of CoCl2·6H2O with tpyOH in a branched tube at 60 °C resulted in the formation of three quality crystals of the complexes 1 and 2 as the major products as well as the complex 3 as a minor product. The crystal structure of [CoCl2(tpyOH)] (1) reveals that the cobalt(II) is penta-coordinated by two Cl and three nitrogen atoms of tpyOH in a distorted square pyramidal geometry. The complex [CoIII(tpyOH)(tpyO)][CoIICl4]·H2O (2) is described as a highly distorted octahedral geometry [CoN6] while the X-ray crystal structure of the complex [CoIIICl2(H2O)(tpyO)]·H2O (3) shows that cobalt(III) is hexa-coordinated in a slightly distorted octahedral geometry CoCl2N3O. Several strong noncovalent interactions are present in the crystal structure of 13. The hydrogen bonding in 1 involves the OH⋯Cl bridges while there is a hydrogen bonding between tpyO and tpyOH of the next molecule in 2 and hydrogen bridges and π–π interactions for 3, connecting molecules and ions in the crystalline 13 to form supramolecular networks. The thermal stabilities of the cobalt complexes reveal that the loss of free terpyridine ligand could not be observed in low temperatures. The hexagonal and spherical Co3O4 nanoparticles (NPCs) were prepared by direct calcination of complexes 13 at 600 °C in air. The nanostructures of the products were characterized by IR, powder X-ray diffraction, field emission scanning electron microscopy and energy-dispersive X-ray spectroscopy which show the purity of the resulting Co3O4 NPCs. The average particle size using Scherrer’s equation is calculated to be about 32–35 nm.


Cobalt Terpyridine Crystal structure Co3O4 NPCs Thermal analysis 



We would like to thank the Iran National Science Foundation (INSF) for financial support (Grant No. 93051215). We also thank the Science Research Council of K.N. Toosi University of Technology for financial support. We greatly appreciate Professor Jan Janczak for his helpful advice on X-ray crystallography.


  1. 1.
    G.T. Morgan, F.H. Burstall, J. Chem. Soc. 20, 20 (1932)CrossRefGoogle Scholar
  2. 2.
    R.A. Fallahpour, Synthesis 2003, 155 (2003)CrossRefGoogle Scholar
  3. 3.
    J. Wang, G.S. Hanan, Synlett. 8:1251 (2005)Google Scholar
  4. 4.
    M.N. Patel, H.N. Joshi, C.R. Patel, J. Organomet. Chem. 701, 8 (2012)CrossRefGoogle Scholar
  5. 5.
    F. Kröhnke, Synthesis 1976:15 (1976)CrossRefGoogle Scholar
  6. 6.
    R.-A. Fallahpour, E.C. Constable, J. Chem. Soc. Perkin Trans. 1, 2263 (1997)CrossRefGoogle Scholar
  7. 7.
    G. Zhang, J. Tan, Y.Z. Zhang, C. Ta, S. Sanchez, S.-Y. Cheng, J.A. Golen, A.L. Rheingold, Inorg. Chim. Acta 435, 147 (2015)CrossRefGoogle Scholar
  8. 8.
    E.C. Constable, C.E. Housecroft, V. Jullien, M. Neuburger, S. Schaffner, Inorg. Chem. Commun. 9, 504 (2006)CrossRefGoogle Scholar
  9. 9.
    Z. Naseri, A. Nemati Kharat, A. Banavand, A. Bakhoda, S. Foroutannejad, Polyhedron 33, 396 (2012)CrossRefGoogle Scholar
  10. 10.
    A.N. Kharat, A. Bakhoda, B.T. Jahromi, Polyhedron 30, 2768 (2011)CrossRefGoogle Scholar
  11. 11.
    R. Indumathy, M. Kanthimathi, T. Weyhermuller, B.U. Nair, Polyhedron 27, 3443 (2008)CrossRefGoogle Scholar
  12. 12.
    M. Chiper, M.A.R. Meier, J.M. Kranenburg, U.S. Schubert, Macromol. Chem. Phys. 208, 679 (2007)CrossRefGoogle Scholar
  13. 13.
    J.E. Beves, E.C. Constable, C.E. Housecroft, C.J. Kepert, D.J. Price, CrystEngComm 9, 456 (2007)CrossRefGoogle Scholar
  14. 14.
    J.E. Beves, E.C. Constable, C.E. Housecroft, M. Neuburger, S. Schaffner, CrystEngComm 10, 344 (2008)CrossRefGoogle Scholar
  15. 15.
    J.E. Beves, D.J. Bray, J.K. Clegg, E.C. Constable, C.E. Housecroft, K.A. Jolliffe, C.J. Kepert, L.F. Lindoy, M. Neuburger, D.J. Price, S. Schaffner, F. Schaper, Inorg. Chim. Acta 361, 2582 (2008)CrossRefGoogle Scholar
  16. 16.
    U.S. Schubert, C. Eschbaumer, O. Hien, P.R. Andres, Terahedron Lett. 42, 4705 (2001)CrossRefGoogle Scholar
  17. 17.
    E.C. Constable, E.L. Dunphy, C.E. Housecroft, M. Neuburger, S. Schaffner, F. Schaper, S.R. Batten, Dalton Trans. 38, 4323 (2007)CrossRefGoogle Scholar
  18. 18.
    F. Yuan, S.-S. Shen, H.-M. Hu, R. An, X. Wang, Z. Chang, G. Xue, Inorg. Chim. Acta 430, 17 (2015)CrossRefGoogle Scholar
  19. 19.
    A.S. Abd-El-Aziz, J.L. Pilfold, B.Z. Momeni, A.J. Proud, J.K. Pearson, Polym. Chem. 5, 3453 (2014)CrossRefGoogle Scholar
  20. 20.
    B.Z. Momeni, S. Heydari, Polyhedron 97, 94 (2015)CrossRefGoogle Scholar
  21. 21.
    J. McMurtrie, I. Dance, CrystEngComm 7, 230 (2005)CrossRefGoogle Scholar
  22. 22.
    J. McMurtrie, I. Dance, CrystEngComm 12, 2700 (2010)CrossRefGoogle Scholar
  23. 23.
    Y. Wang, G. Chen, L. Han, J. Pei, J. Solid State Chem 206, 251 (2013)CrossRefGoogle Scholar
  24. 24.
    V. Fernández-Moreira, F.L. Thorp-Greenwood, R.J. Arthur, B.M. Kariuki, R.L. Jenkins, M.P. Coogan, Dalton Trans 39, 7493 (2010)CrossRefGoogle Scholar
  25. 25.
    K.A. Maghacut, A.B. Wood, W.J. Boyko, T.J. Dudley, J.J. Paul, Polyhedron 67, 329 (2014)CrossRefGoogle Scholar
  26. 26.
    J.R. Jeitler, M.M. Turnbull, Acta Cryst E61, m1846 (2005)Google Scholar
  27. 27.
    A. Galet, A.B. Gaspar, M.C. Muňoz, J.A. Real, Inorg. Chem. 45, 4413 (2006)CrossRefGoogle Scholar
  28. 28.
    P. Nielsen, H. Toftlund, A.D. Bond, J.F. Boas, J.R. Pilbrow, G.R. Hanson, C. Noble, M.J. Riley, S.M. Neville, B. Moubaraki, K.S. Murray, Inorg. Chem. 48, 7033 (2009)CrossRefGoogle Scholar
  29. 29.
    A.B. Gaspar, M.C. Muňoz, V. Niel, J.A. Real, Inorg. Chem. 40, 9 (2001)CrossRefGoogle Scholar
  30. 30.
    S. Hayami, Y. Komatsu, T. Shimizu, H. Kamihata, Y.H. Lee, Coord. Chem. Rev. 255, 1981 (2011)CrossRefGoogle Scholar
  31. 31.
    T. Wieprecht, J. Xia, U. Heinz, J. Dannacher, G. Schlingloff, J. Mol. Catal. A 203, 113 (2003)CrossRefGoogle Scholar
  32. 32.
    V. Raman, S. Suresh, P.A. Savarimuthu, T. Raman, A.M. Tsatsakis, K.S. Golokhvast, V.K. Vadivel, Exp Ther. Med. 11, 553 (2016)CrossRefGoogle Scholar
  33. 33.
    S. Gopinath, K. Sivakumar, B. Karthikeyen, C. Ragupathi, R. Sundaram, Phys. E 81, 66 (2016)CrossRefGoogle Scholar
  34. 34.
    B. Varghese, T.C. Hoong, Z. Yanwu, M.V. Reddy, B.V.R. Chowdari, A.T.S. Wee, T.B.C. Vincent, C.T. Lim, C.-H. Sow, Adv. Funct. Mater. 17, 1932 (2007)CrossRefGoogle Scholar
  35. 35.
    D.D.M. Prabaharan, K. Sadaiyandi, M. Mahendran, S. Sagadevan, Appl. Phys. A 123, 264 (2017)CrossRefGoogle Scholar
  36. 36.
    V.R. Shinde, S.B. Mahadik, T.P. Gujar, C.D. Lokhande, Appl. Surf. Sci. 252, 7487 (2006)CrossRefGoogle Scholar
  37. 37.
    M. Pudukudy, Z. Yaakob, Chem. Pap. 68, 1087 (2014)CrossRefGoogle Scholar
  38. 38.
    L. Sun, H. Li, L. Ren, C. Hu, Solid State Sci. 11, 108 (2009)CrossRefGoogle Scholar
  39. 39.
    H. Wang, L. Zhang, X. Tan, C.M.B. Holt, B. Zahiri, B.C. Olsen, D. Mitlin, J. Phys. Chem. C 115, 17599 (2011)CrossRefGoogle Scholar
  40. 40.
    H. Sadeghzadeh, A. Morsali, V.T. Yilmaz, O. Büyükgüngör, Mater. Lett. 64, 810 (2010)CrossRefGoogle Scholar
  41. 41.
    A. Dehno Khalaji, M. Nikookar, K. Fejfarova, M. Dusek, J. Mol. Struct. 107, 6 (2014)CrossRefGoogle Scholar
  42. 42.
    M. Salavati-Niasari, A. Khansari, C. R. Chim 17, 352 (2014)CrossRefGoogle Scholar
  43. 43.
    A. Mehrani, A. Morsali, J. Mol. Struct. 1074, 596 (2014)CrossRefGoogle Scholar
  44. 44.
    L. Dolatyari, P. Seddigi, A. Ramazani, M.G. Amiri, J. Struct. Chem. 54, 571 (2013)CrossRefGoogle Scholar
  45. 45.
    E.C. Constable, M.D. Ward, J. Chem. Soc. Dalton Trans.4:1405 (1990)CrossRefGoogle Scholar
  46. 46.
    G.M. Sheldrick, Bruker Analytical X-Ray-Division, Bruker Corp., Madison (2012)Google Scholar
  47. 47.
    G.M. Sheldrick, SHELXL-2014 Program, (Sheldrick, 2014) for structure refinement. Acta Cryst. C 71, 3 (2015)CrossRefGoogle Scholar
  48. 48.
    R. Jenkins, R.L. Snyder, Introduction to X-ray powder diffractometry Chemical Analysis: vol. 138 (Wiley, New York, 1996),CrossRefGoogle Scholar
  49. 49.
    S.-H. Hwang, C.N. Moorefield, P. Wang, J.-Y. Kim, S.-W. Lee, G.R. Newkome, Inorg. Chim. Acta 360, 1780 (2007)CrossRefGoogle Scholar
  50. 50.
    J. Kuwabara, T. Namekawa, M. Haga, T. Kanbara, Dalton Trans. 42, 44 (2012)CrossRefGoogle Scholar
  51. 51.
    S. Aroua, T.K. Todorova, P. Hommes, L.-M. Chamoreau, H.-U. Reissig, V. Mougel, M. Fontecave, Inorg. Chem. 56, 373 (2017)CrossRefGoogle Scholar
  52. 52.
    H. Hofmeier, U. Schubert, Chem. Soc. Rev. 33, 373 (2004)CrossRefGoogle Scholar
  53. 53.
    B. Xu, B. Liu, H.-M. Hu, Y. Cheng, Z. Chang, G. Xue, Polyhedron 96, 88 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Badri Z. Momeni
    • 1
    Email author
  • Farzaneh Rahimi
    • 1
  • Frank Rominger
    • 2
  1. 1.Faculty of ChemistryK.N. Toosi University of TechnologyTehranIran
  2. 2.Organisch-Chemisches InstitutUniversität HeidelbergHeidelbergGermany

Personalised recommendations