Development of Advanced, Non-toxic, X-ray Radiation Shielding Glass Possessing Barium, Boron Substituted Kornerupine Crystallites in the Glassy Matrix


Conventionally lead based radiation shielding glasses find application in Diagnostic X ray room. However, the production and recycling of lead containing glasses posse’s health hazards and therefore there is an urgent need to develop lead free, non-toxic radiation shielding glasses useful for Diagnostic X-ray rooms and many other shielding applications. The major glass forming constituents includes oxide of alkali and alkaline earth metals etc. The simultaneous presence of glass forming and shielding imparting chemical constituents present in brine sludge (BS)—a waste generated in chloral alkali industries, enabling synergistic chemical reaction among other raw materials namely fly ash (FA) and Borax (B2O3), have been chemically formulated and designed for Developing shielding Kornerupine crystallites embedded in the developed lead free homogenous shielding glass by a novel process (The patent application has been filed in India Ref. No. 0059NF2016). Shielding glasses with composition xBS:(80-X)B2O3:20 FA, where (x = 35, 40, 45, 50 wt%) have been prepared using melt process followed by annealing method. The developed shielding glass has been characterized using complementary sophisticated instrumental techniques such as FESEM, EDS XRD, IR and TG/DSC and SEM for identifying shielding crystallites embedded in the developed glassy matrix. The X-ray attenuation test of the developed glass has shown that these glasses can find broad application spectrum ranging from diagnostic X-ray room to various functional accessories of shielding appliances being used in technical, medical and research applications.

Graphical Abstract

Graphical abstract of development of advanced, non-toxic, X-ray radiation shielding glass possessing barium, boron substituted kornerupine crystallites in the glassy matrix

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11


  1. 1.

    J.P. McCaffrey, F. Tessier, H. Shen, Radiation shielding materials and radiation scatter effects for interventional radiology (IR) physicians. Med. Phys. 39, 4537–4546 (2012)

    CAS  Article  Google Scholar 

  2. 2.

    K. Choju, Radiation-shielding glass and method of manufacturing the same, patent no. US 8,119,999 B2, 21 Feb (2012)

  3. 3.

    L. Tiede Ralph, Lead based glass composition, Publication number US2736714 (1956)

  4. 4.

    S. Ruengsri, Radiation shielding properties comparison of Pb-based silicate, borate, and phosphate glass matrices. Sci. Technol. Nucl. Install. 2014, 218041 (2014)

  5. 5.

    D. Labino et al., Radiation resisting glass composition. Publication No. 3,138,561, 23 June (1964)

  6. 6.

    L.W. Riker, Use of Rare Earths in Glass Compositions for Making Radiation Shielding Material, Chap. 4. American Chemical Society, Washington, DC, 1981) pp. 81–94

  7. 7.

    V.V. Tsetlin et al., Vitereous radioelectrets: materials for shielding spacecraft against radiation (review). Glass Ceram. 58, 209–213 (2001)

    CAS  Article  Google Scholar 

  8. 8.

    G. Zguris et al., Glass compositions, Publication no. EP 1774075, A2 (2007)

  9. 9.

    V.V. Mazza et al., Nuclear radiation shielding window. Publication no. 3,283,156, 1st Nov (1966)

  10. 10.

    S. Michiharu, K. Yoh, Coloring characteristic of lead glass for X-ray irradiation. New J. Glass Ceram. 5, 25–30 (2015)

    Article  Google Scholar 

  11. 11.

    S.Y. El-Kameesy, S.A. El-Ghany, M. Abd, E. Azooz, Y. Abd Allah El-Gammam, Shielding properties of lead zinc borate glasses. W. J. Cond. Matter Physics, 3, 198–202 (2013). doi:10.4236/wjcmp.2013.34033

    Google Scholar 

  12. 12.

    T. Suparat, K. Jakrapong, L. Pichet, C. Weerapong, Development of BaO:B2O3:flyash glass system for gamma-rays shielding materials. Prog. Nucl. Sci. Technol. 1, 110–113 (2011)

    Article  Google Scholar 

  13. 13.

    The Fly Ash Story: An Introduction. Key issue: Indian Energy Sector, TERI Report down loaded on 22 Oct 2003 from the site (2000)

  14. 14.

    S. Kumar et al., Synthesis of mullite aggregates from fly ash: effect of thermo mechanical behavior of low cement castables. Br. Ceram. Trans. 103(4), 176–180 (2004)

    CAS  Article  Google Scholar 

  15. 15.

    W. Rachniyom et al., Pb-free radiation shielding glass using coal fly ash. J. Math. Fundam. Sci. 47(3), 309–315 (2015)

    Article  Google Scholar 

  16. 16.

    Tuscharoen, J. Kaewkhao, P. Limsuwan, W. Chewpraditkul, Development of BaO:B2O3:flyash glass system for gamma-rays shielding materials, Progress Nucl. Sci. and Tech. 1, 110–113 (2011)

    Article  Google Scholar 

  17. 17.

    N. Khiatai et al., Silica–soda-lime compositions and their applications. Publication no. US2009/0325778A1 (2009)

  18. 18.

    S. Sukhpal, K. Ashok, S. Devinder, S.T. Kulwant, S.M. Gurmel, Barium–borate–flyash glasses: as radiation shielding materials, Nucl. Instrum. Methods Phys. Res. Sect. B 266(1), 140–146 (2008)

    Article  Google Scholar 

  19. 19.

    V. Sarika, S.S. Amritphale, K. Mohd. Akram, A. Avneesh, D. Satyabrata, Development of advanced geopolymerized brine sludge based composites. J. Environ. Polym. Degr. 24 (2017). doi:10.1007/s10924-016-0877-1

  20. 20.

    Chlor Alkali Process-Wikipedia, The free encyclopedia (2016) Accessed 9 Dec 2016

  21. 21.

    S. Singh, A. Kumar, D. Singh, K.S. Thind, G.S. Mudahar, Barium–borate–flyash glasses: as radiation shielding materials. Nucl. Instrum. Method Phys. Res. B (266)140–146 (2008)

    CAS  Article  Google Scholar 

  22. 22.

    C.P. Kaushik, R.K. Mishra, S. Kumar, B.S. Tomar, A.K. Tyagi, K. Raj, V.K. Manchanda, Effect of barium on diffusion of sodium in borosilicate glass. J. Hazard. Mater. 156, 129–134 (2005)

    Google Scholar 

  23. 23.

    S. Kumar, R.K. Mishra, B.S. Tomar, A.K. Tyagi, C.P. Kaushik, K. Raj, V.K. Manchanda, Heavy ion Rutherford back scattering spectrometry (HIRBS) study of barium diffusion in borosilicate glass. Nucl. Instrum. Method Phys. Res. B 266, 649–652 (2008)

    CAS  Article  Google Scholar 

  24. 24.

    A. Lacroix, A. de Gramont, Spectroscopic analysis for boron and its presence in several natural aluminiumsilicates. Bull. Soc. Franc. Mineral. 44, 67–77 (1921)

    CAS  Google Scholar 

  25. 25.

    M.A. Cooper, F.C. Hawthorne, The crystal chemistry of the kornerupine–prismatine series. IV. Complete chemical formulae from electron-microprobe data and X-ray powder diffraction. Can. Mineral. 47, 297–302 (2009)

    CAS  Article  Google Scholar 

  26. 26.

    F.C. Hawthorne, M.A. Cooper, E.S. Grew, The crystal chemistry of the kornerupine–prismatine series. III. Chemical relations. Can. Mineral. 47(209)275–296

  27. 27.

    IS, Methods of Chemical Analysis of Hydraulic Cement, IS 4032-2005. (Bureau of Indian Standards, New Delhi, 2005)

    Google Scholar 

  28. 28.

    B.R. Priya Rani, M.T. Sebastian, The effect of glass addition on the dielectric properties of barium strontium titanate. J. Mater. Sci. 19, 39–44 (2008)

    CAS  Google Scholar 

  29. 29.

    B.A. Archer et al., Attenuation properties of diagnostic X-ray shielding materials. Med. Phys. 21, 1499–1507 (1994)

    CAS  Article  Google Scholar 

  30. 30.

    V. Sarika, S.S. Amritphale, D. Satyabrata, Development of functionalized nano-precursor gel useful for making flexible and moldable radiation shielding material. J. Mater. Eng. Perform. 26, 1018–1025 (2017)

  31. 31.

    Powder Diffraction File, Alphabetical Index Inorganic Phases (1984) Published by JCPDS International Centre for Diffraction Data 1601, Park Lane Swarthmore, Pennsylvania, 19081, USA

  32. 32.

    C.K. Gautam, D. Kumar, O. Parkash, IR Study of Pb–Sr titanate borosilicate glasses. Bull. Mater. Sci. 33, 145–148 (2010)

    CAS  Article  Google Scholar 

  33. 33.

    L.F. Ray, L. Andres, X. Yunfei, S. Ricardo, A Vibrational spectroscopic study of the silicate mineral kornerupine. Spectrosc. Lett. 48, 487–491 (2015)

    Article  Google Scholar 

  34. 34.

    P.G. Bray, Interaction of radiation with solids (Plenum, New York, 1967)

    Google Scholar 

  35. 35.

    E.I. Kamitsos, M.A. Karakassides, G.D. Chryssikos, Vibrational spectra of magnesium-sodium-borate glasses. 2. Raman and mid-infrared investigation of the network structure. J. Phys. Chem. 91(5), 1073–1079 (1987)

    CAS  Article  Google Scholar 

  36. 36.

    F.M. Ezz Eldin, N.A.E.L. Alaily, F.A. Khalifa, H.A.E.L. Batal, in Fundamental of glass science and technology, 3rd ed., E.S.G. conference (Verlag Der Deutschen Glastechnischen Gesellschaft, Germany, 1995)

  37. 37.

    N.A. Ghoneun, H.A.E.I. Batal, N. Abdel Shafi, M.H. Azooz, in Proceeding of Egyptian conference of chemistry (Gordon and Breach Science Publishers, London, 1996) p. 162

  38. 38.

    A.S. Tenny, J. Wong, J. Chem. Phys. 56, 5516 (1972)

    Article  Google Scholar 

  39. 39.

    H. Dwoeidari, Z. Abou, E.I Damraway, J. Phys. D: Appl. Phys. 24, 222 (1991)

    Google Scholar 

  40. 40.

    P.G Bray, J.G.O Keefe, J. Phys. Chem. Glasses 4, 37(1963)

    Google Scholar 

Download references


Authors are grateful to Director CSIR-AMPRI Bhopal for providing necessary institutional facilities and encouragement.

Author information



Corresponding author

Correspondence to Sarika Verma.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interest regarding the publication of this paper.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Verma, S., Sanghi, S.K. & Amritphale, S.S. Development of Advanced, Non-toxic, X-ray Radiation Shielding Glass Possessing Barium, Boron Substituted Kornerupine Crystallites in the Glassy Matrix. J Inorg Organomet Polym 28, 35–49 (2018).

Download citation


  • Glass
  • Shielding
  • Brine sludge
  • Attenuation
  • Diagnostic X-ray