Skip to main content
Log in

Synthesis and Characterization of Activated Carbon/Maghemite/Starch Magnetic Bionanocomposite and Its Application for Permanganate Removal from Aqueous Solution

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Magnetic bionanocomposite of Activated Carbon/Maghemite/Starch was synthesized via coprecipitation method and used for permanganate removal from aqueous solution. Physical and structural features and magnetic properties of bionanocomposite were assessed using different techniques including X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectrometer and vibrating sample magnetometer. Different isotherms, kinetic and thermodynamic models of adsorption process were investigated. The adsorption process showed more consistency with the pseudo-second-order kinetic model. Adsorption isotherm data indicated a better compatibility with Langmuir model. Thermodynamic findings revealed that adsorption process is spontaneous and endothermic. The maximum adsorption capacity of permanganate obtained by response surface methodology under optimal conditions of pH 2, an adsorbent dose of 0.5 g L−1 and initial concentration of permanganate ion of 50 mg L−1 was 48.25 mg g−1. Given the biocompatibility, nontoxicity, and availability of starch and magnetic property of composite adsorbent contributing to the acceleration of final separation of a pollutant from solution, this bionanocomposite can be regarded as a suitable and effective adsorbent for water pollutants removal at low concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Lasheen et al., Removal of heavy metals from aqueous solution by multiwalled carbon nanotubes: equilibrium, isotherms, and kinetics. Desalin. Water Treat. 53(13), 3521–3530 (2015)

    Article  CAS  Google Scholar 

  2. A.K. Meena et al., Removal of heavy metal ions from aqueous solutions using carbon aerogel as an adsorbent. J. Hazard. Mater. 122(1), 161–170 (2005)

    Article  CAS  Google Scholar 

  3. S.K. Sharma, Heavy Metals in Water: Presence, Removal and Safety. (Royal Society of Chemistry, Cambridge, 2014)

    Book  Google Scholar 

  4. N.N. Nassar, Rapid removal and recovery of Pb (II) from wastewater by magnetic nanoadsorbents. J. Hazard. Mater. 184(1), 538–546 (2010)

    Article  CAS  Google Scholar 

  5. Y.-M. Hao, C. Man, Z.-B. Hu, Effective removal of Cu (II) ions from aqueous solution by amino-functionalized magnetic nanoparticles. J. Hazard. Mater. 184(1), 392–399 (2010)

    Article  CAS  Google Scholar 

  6. D.A. Gopakumar et al., Meldrum’s acid modified cellulose nanofiber-based polyvinylidene fluoride microfiltration membrane for dye water treatment and nanoparticle removal. ACS Sustain. Chem. Eng. 5(2), 2026–2033 (2017)

    Article  CAS  Google Scholar 

  7. K.R. Reddy et al., Enhanced photocatalytic activity of nanostructured titanium dioxide/polyaniline hybrid photocatalysts. Polyhedron 120, 169–174 (2016)

    Article  CAS  Google Scholar 

  8. A. Dias et al., A biotechnological perspective on the application of iron oxide magnetic colloids modified with polysaccharides. Biotechnol. Adv. 29(1), 142–155 (2011)

    Article  CAS  Google Scholar 

  9. V. Veiga et al., Formation and characterization of superparamagnetic cross-linked high amylose starch. Carbohydr. Polym. 42(4), 353–357 (2000)

    Article  CAS  Google Scholar 

  10. D. Lu, C. Xiao, S. Xu, Starch-based completely biodegradable polymer materials. Express Polym. Lett. 3(6), 366–375 (2009)

    Article  CAS  Google Scholar 

  11. K.R. Reddy et al., In situ self-organization of carbon black–polyaniline composites from nanospheres to nanorods: synthesis, morphology, structure and electrical conductivity. Synth. Met. 159(19), 1934–1939 (2009)

    Article  CAS  Google Scholar 

  12. M. Cakici, R.R. Kakarla, F. Alonso-Marroquin, Advanced electrochemical energy storage supercapacitors based on the flexible carbon fiber fabric-coated with uniform coral-like MnO 2 structured electrodes. Chem. Eng. J. 309, 151–158 (2017)

    Article  CAS  Google Scholar 

  13. S.H. Choi et al., Properties of graphene/waterborne polyurethane nanocomposites cast from colloidal dispersion mixtures. J. Macromol. Sci. Part B 51(1), 197–207 (2012)

    Article  CAS  Google Scholar 

  14. A. Faghani et al., Controlled covalent functionalization of thermally reduced graphene oxide to generate defined bifunctional 2D nanomaterials. Angew. Chem. Int. Ed. 56(10), 2675–2679 (2017)

    Article  CAS  Google Scholar 

  15. D.R. Son et al., Compatibility of thermally reduced graphene with polyesters. J. Macromol. Sci. Part B 55(11), 1099–1110 (2016)

    Article  CAS  Google Scholar 

  16. Y.R. Lee et al., Graphite oxides as effective fire retardants of epoxy resin. Macromol. Res. 19(1), 66–71 (2011)

    Article  CAS  Google Scholar 

  17. K.R. Reddy et al., Synthesis of metal (Fe or Pd)/alloy (Fe–Pd)-nanoparticles-embedded multiwall carbon nanotube/sulfonated polyaniline composites by γ irradiation. J. Polym. Sci. Part A 44(10), 3355–3364 (2006)

    Article  CAS  Google Scholar 

  18. K.R. Reddy et al., A new one-step synthesis method for coating multi-walled carbon nanotubes with cuprous oxide nanoparticles. Scripta Mater. 58(11), 1010–1013 (2008)

    Article  CAS  Google Scholar 

  19. S. Kahraman, N. Dogan, S. Erdemoglu, Use of various agricultural wastes for the removal of heavy metal ions. Int. J. Environ. Pollut. 34(1–4), 275–284 (2008)

    Article  CAS  Google Scholar 

  20. S. Sircar, T. Golden, M. Rao, Activated carbon for gas separation and storage. Carbon 34(1), 1–12 (1996)

    Article  CAS  Google Scholar 

  21. A. Demirbas, Agricultural based activated carbons for the removal of dyes from aqueous solutions: a review. J. Hazard. Mater. 167(1), 1–9 (2009)

    Article  CAS  Google Scholar 

  22. M.A. Nahil, P.T. Williams, Activated carbons from acrylic textile waste. J. Anal. Appl. Pyrolysis 89(1), 51–59 (2010)

    Article  CAS  Google Scholar 

  23. S. Mallakpour, M. Hatami, Bionanocomposites preparation and characterization: dispersion of surface-modified ZnO nanoparticles in optically active poly (amide-imide) derived from 3, 5-diamino-N-(4-hydroxyphenyl) benzamide and amino acid. Des. Monomers Polym. 14(5), 461–473 (2011)

    Article  CAS  Google Scholar 

  24. K.R. Reddy, V.G. Gomes, M. Hassan, Carbon functionalized TiO2 nanofibers for high efficiency photocatalysis. Mater. Res. Express 1(1), 015012 (2014)

    Article  Google Scholar 

  25. K.R. Reddy, K.P. Lee, A.I. Gopalan, Self-assembly approach for the synthesis of electro-magnetic functionalized Fe 3 O 4/polyaniline nanocomposites: effect of dopant on the properties. Colloids Surf. A 320(1), 49–56 (2008)

    Article  CAS  Google Scholar 

  26. A.H. Lu, E.E.L. Salabas, F. Schüth, Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed. 46(8), 1222–1244 (2007)

    Article  CAS  Google Scholar 

  27. G. Gnanaprakash et al., Effect of initial pH and temperature of iron salt solutions on formation of magnetite nanoparticles. Mater. Chem. Phys. 103(1), 168–175 (2007)

    Article  CAS  Google Scholar 

  28. M. Hassan et al., Edge-enriched graphene quantum dots for enhanced photo-luminescence and supercapacitance. Nanoscale 6(20), 11988–11994 (2014)

    Article  CAS  Google Scholar 

  29. F. Ghorbani et al., Application of response surface methodology for optimization of cadmium biosorption in an aqueous solution by Saccharomyces cerevisiae. Chem. Eng. J. 145(2), 267–275 (2008)

    Article  CAS  Google Scholar 

  30. Z. Aksu, F. Gönen, Binary biosorption of phenol and chromium (VI) onto immobilized activated sludge in a packed bed: prediction of kinetic parameters and breakthrough curves. Sep. Purif. Technol. 49(3), 205–216 (2006)

    Article  CAS  Google Scholar 

  31. M.Y. Can, Y. Kaya, O.F. Algur, Response surface optimization of the removal of nickel from aqueous solution by cone biomass of Pinus sylvestris. Bioresour. Technol. 97(14), 1761–1765 (2006)

    Article  CAS  Google Scholar 

  32. S.C. Ferreira et al., Box-Behnken design: an alternative for the optimization of analytical methods. Anal. Chim. Acta 597(2), 179–186 (2007)

    Article  CAS  Google Scholar 

  33. M.A. Bezerra et al., Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 76(5), 965–977 (2008)

    Article  CAS  Google Scholar 

  34. K. Kaewtatip, V. Tanrattanakul, Preparation of cassava starch grafted with polystyrene by suspension polymerization. Carbohydr. Polym. 73(4), 647–655 (2008)

    Article  CAS  Google Scholar 

  35. S. Pal, D. Mal, R. Singh, Cationic starch: an effective flocculating agent. Carbohydr. Polym. 59(4), 417–423 (2005)

    Article  CAS  Google Scholar 

  36. S. Yao et al., Removal of Pb (II) from water by the activated carbon modified by nitric acid under microwave heating. J. Colloid Interface Sci. 463, 118–127 (2016)

    Article  CAS  Google Scholar 

  37. E. Darezereshki et al., Single-step synthesis of activated carbon/γ-Fe 2 O 3 nano-composite at room temperature. Mater. Sci. Semicond. Process. 16(1), 221–225 (2013)

    Article  CAS  Google Scholar 

  38. T.R. Bastami, M.H. Entezari, Activated carbon from carrot dross combined with magnetite nanoparticles for the efficient removal of p-nitrophenol from aqueous solution. Chem. Eng. J. 210, 510–519 (2012)

    Article  CAS  Google Scholar 

  39. V. Javanbakht et al., A novel magnetic chitosan/clinoptilolite/magnetite nanocomposite for highly efficient removal of Pb (II) ions from aqueous solution. Powder Technol. 302, 372–383 (2016)

    Article  CAS  Google Scholar 

  40. M. Xie et al., Synthesis and adsorption behavior of magnetic microspheres based on chitosan/organic rectorite for low-concentration heavy metal removal. J. Alloys Compd. 647, 892–905 (2015)

    Article  CAS  Google Scholar 

  41. M. Rafatullah et al., Adsorption of copper (II), chromium (III), nickel (II) and lead (II) ions from aqueous solutions by meranti sawdust. J. Hazard. Mater. 170(2), 969–977 (2009)

    Article  CAS  Google Scholar 

  42. R.K. Gautam et al., Removal of Ni (II) by magnetic nanoparticles. J. Mol. Liq. 204, 60–69 (2015)

    Article  CAS  Google Scholar 

  43. G. Bayramoğlu, M.Y. Arica, Adsorption of Cr (VI) onto PEI immobilized acrylate-based magnetic beads: isotherms, kinetics and thermodynamics study. Chem. Eng. J. 139(1), 20–28 (2008)

    Article  Google Scholar 

  44. Y.C. Chang, D.H. Chen, Adsorption kinetics and thermodynamics of acid dyes on a carboxymethylated chitosan-conjugated magnetic nano-adsorbent. Macromol. Biosci. 5(3), 254–261 (2005)

    Article  CAS  Google Scholar 

  45. M. Ahmed et al., Magnetite–hematite nanoparticles prepared by green methods for heavy metal ions removal from water. Mater. Sci. Eng. B 178(10), 744–751 (2013)

    Article  CAS  Google Scholar 

  46. V. Javanbakht, H. Zilouei, K. Karimi, Lead biosorption by different morphologies of fungus Mucor indicus. Int. Biodeterior. Biodegrad. 65(2), 294–300 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support of this work by ACECR Institute of Higher Education (Isfahan Branch) is gratefully appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vahid Javanbakht.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahpeima, S., Javanbakht, V. & Esmaili, J. Synthesis and Characterization of Activated Carbon/Maghemite/Starch Magnetic Bionanocomposite and Its Application for Permanganate Removal from Aqueous Solution. J Inorg Organomet Polym 28, 195–211 (2018). https://doi.org/10.1007/s10904-017-0688-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-017-0688-4

Keywords

Navigation