Advertisement

Efficient Red Downshifting in Layered Structure: A Broad Spectral Converter for Enhancing Photo-response of Solar Cell

  • Sonal P. Ghawade
  • Kavita A. Deshmukh
  • D. R. Peshwe
  • S. J. Dhoble
  • Abhay D. Deshmukh
Article

Abstract

Spectral convertors are promising materials for solar cells as they engineered the band gap necessary for suppressing the losses. Existing spectral convertors have small stokes shift which exerts re-absorption losses due to the overlap of spectrum and limits light catching ability. Here we present large stoke shift chromium doped rhombohedral Al2O3: Cr3+ as a spectral convertor from UV–VIS to red region as single doped with maximum coverage of solar spectrum in UV region. The large stoke shifts in red region around 694 nm originate from 2Eg to 4A2g and broad absorption originates from \(^{{\text{4}}}{{\text{A}}_{{\text{2g}}}}{ \to ^{\text{4}}}{{\text{T}}_{{\text{1g}}}},{{\text{ }}^{\text{4}}}{{\text{A}}_{{\text{2g}}}}{ \to ^{\text{4}}}{{\text{T}}_{{\text{2g}}}}\). This broad absorption (300–600 nm) and large stokes shift emission at 694 nm suggest that the Cr3+ dopant rhombohedral Al2O3 is well suited as spectral convertors for enhancing the efficiency of the solar cell through better matching of spectral response with spectral distribution of light striking on the solar cell.

Keywords

Solar cell Al2O3: Cr3+ Stoke shift Combustion process Luminescent downshifting layer (LDS) 

Notes

Acknowledgements

This work was supported by the Specialized Research Fund by University Research Project Scheme by RTM Nagpur University, Nagpur, India (sanctioned no. Dev/1345).

References

  1. 1.
    M. Peng, L. Wondraczek, J. Mater. Chem. 19, 627–630 (2009)CrossRefGoogle Scholar
  2. 2.
    E. Klampaftis, D. Ross, K.R. McIntosh, B.S. Richards, Sol. Energy Mater. Sol. Cells 93(8), 1182–1194 (2009)CrossRefGoogle Scholar
  3. 3.
    H. Shpaisman, O. Niitsoo, I. Lubomirsky, D. Cahen, Sol. Energy Mater. Sol. Cells 92, 1541 (2008)CrossRefGoogle Scholar
  4. 4.
    C. Strümpel, M. McCann, G. Beaucarne et al., Sol. Energy Mater. Sol. Cells 91, 238–249 (2007)CrossRefGoogle Scholar
  5. 5.
    T. Trupke, M.A. Green, P. Würfel, J. Appl. Phys. 92, 1668–1674 (2002)CrossRefGoogle Scholar
  6. 6.
    B.S. Richards, Sol. Energy Mater. Sol. Cells 90, 1189–1207 (2006)CrossRefGoogle Scholar
  7. 7.
    B.S. Richards, Sol. Energy Mater. Sol. Cells 90, 2329–2337 (2006)CrossRefGoogle Scholar
  8. 8.
    S.A. Basun, A.A. Kaplyanskii, A.B. Kutsenko, V. Dierolf, T. Troester, S.E. Kapphan, K. Polgar, Appl. Phys. B 73, 453 (2001)CrossRefGoogle Scholar
  9. 9.
    L. Jastrabik, S.E. Kapphan, V.A. Trepakov, I.B. Kudyk, R. Pankrath, J. Lumin. 657, 102–103 (2003)Google Scholar
  10. 10.
    T.H. Maiman, R.H. Hoskins, I.T. D’Haenens, C.K. Aswa, V. Evtuhov, Phys. Rev. 123, 1151 (1961)CrossRefGoogle Scholar
  11. 11.
    J.C. Walling, H.P. Jenssen, R.C. Morris, E.W. O’Dell, O.G. Peterson, Opt. Lett. 4, 182 (1979)CrossRefGoogle Scholar
  12. 12.
    J.C. Walling, O.G. Peterson, H.P. Jenssen, R.C. Morris, E.W. O’Dell, IEEE J. Quantum Electron. QE-16, 1302 (1980)CrossRefGoogle Scholar
  13. 13.
    R.C. Powell, in: Physics of Solid-state Laser Materials. (Springer, New York, 1998)CrossRefGoogle Scholar
  14. 14.
    Y. Teng, J. Zhou, S.N. Khisro, S. Zhou, J. Qiu, Mater. Chem. Phys. 147, 772 (2014)CrossRefGoogle Scholar
  15. 15.
    H.B. Premkumar, D.V. Sunitha, H. Nagabhushana, S.C. Sharma, B.M. Nagabhushana, J.L. Rao, R.P.S. Kinshuk Gupta, Spectrochim. Acta Part A 96, 154 (2012)CrossRefGoogle Scholar
  16. 16.
    H.N. Bordallo, X. Wang, K.M. Hanif, G.F. Strouse, R.J.M. da Fonseca, L.P. Sosman, A.D. Tavares Jr., J. Phys. Condens. Matter 14, 12383–12389 (2002)CrossRefGoogle Scholar
  17. 17.
    V. Singh, R.P.S. Chakradhar, J.L. Rao, S.H. Kim, J. Lumin. 154, 328 (2014)CrossRefGoogle Scholar
  18. 18.
    O.A. Plaksin, V.A. Stepanov, P.A. Stepanov, V.M. Chernov, V.A. Skuratov, J. Nucl. Mater. 233, 1355 (1996)CrossRefGoogle Scholar
  19. 19.
    E. Broussell, L. Fortina, S. Kulyuk, A. Popov, R. Anedda, J. Appl. Phys. 84, 531 (1998)CrossRefGoogle Scholar
  20. 20.
    S.M. Kaczmarek, W. Chen, G. Boulon, Cryst. Res. Technol. 41, 41 (2006)CrossRefGoogle Scholar
  21. 21.
    T.-L. Phan, M.-H. Phan, S.C. Yu, Phys. Stat. Sol. (b) 241, 434 (2004)CrossRefGoogle Scholar
  22. 22.
    R. Krishnan, R. Kesavamoorthy, S. Dash, A.K. Tyagi, B. Raj, Scripta Mater. 48, 99 (2003)CrossRefGoogle Scholar
  23. 23.
    M. Yamaga, P.I. Macfarlane, K. Holliday, B. Henderson, N. Kodama, Y. Inoue, J. Phys. Condens. Matter 9, 1575 (1997)CrossRefGoogle Scholar
  24. 24.
    M. Yamaga, J.P.R. Wells, M. Honda, T.P.J. Han, B. Henderson, J. Lumin. 108, 313 (2004)CrossRefGoogle Scholar
  25. 25.
    T. Ohtake, N. Sonoyama, T. Sakata, Chem. Phys. Lett. 318, 517 (2000)CrossRefGoogle Scholar
  26. 26.
    W. Ryba-Romanowski, V. Gołab, W.A. Pisarski, G. Dominiak-Dzik, M.N. Palatnikov, N.V. Sidorov, V.T. Kalinnikov, Appl. Phys. Lett. 70, 2505 (1997)CrossRefGoogle Scholar
  27. 27.
    T.P.J. Han, F. Jaque, L. Arizmendi, V. Bermudezb, A. Suchocki, J. Lumin. 108, 55 (2004)CrossRefGoogle Scholar
  28. 28.
    X. Long, G. Wang, T.P.J. Han, J. Cryst. Growth 249, 191 (2003)CrossRefGoogle Scholar
  29. 29.
    A. Al-Abdalla, Z. Barandiaran, L. Seijo, R. Lindh, J. Chem. Phys. 108, 2005 (1998)CrossRefGoogle Scholar
  30. 30.
    O.S. Wenger, R. Valiente, H.U. Gudel, J. Chem. Phys. 115, 3819 (2001)CrossRefGoogle Scholar
  31. 31.
    R.J.M. da Fonseca, A.D. Tavares Jr., P.S. Silva, T. Abritta, N.M. Khaidukov, Solid State Commun. 110, 519 (1999)CrossRefGoogle Scholar
  32. 32.
    M. Mortier, Q. Wang, J.Y. Buzare, M. Rousseau, B. Piriou, Phys. Rev. B 56, 3022 (1997)CrossRefGoogle Scholar
  33. 33.
    J.J. Kingsley, K. Suresh, K.C. Patil, J. Mater. Sci. 25, 1305 (1990)CrossRefGoogle Scholar
  34. 34.
    J.J. Kingsley, K.C. Patil, Bull. Mater. Sci. 13, 179 (1990)CrossRefGoogle Scholar
  35. 35.
    L.E. Shea, J. McKittrick, O.A. Lopez, J. Am. Ceram. Soc. 79(12), 3257 (1996)CrossRefGoogle Scholar
  36. 36.
    J.M. McHale, A. Auroux, A.J. Perrotta, A. Navrotsky, Science 95, 277 (1997)Google Scholar
  37. 37.
    J.M. McHale, A. Auroux, A.J. Perrotta, A. Navrotsky, Science 95, 788 (1997)CrossRefGoogle Scholar
  38. 38.
    C. Sayle, J.A. Doig, S.A. Maicaneanu, G.W. Watson, Phys. Rev. B65, 245414 (2002)CrossRefGoogle Scholar
  39. 39.
    J.A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N.J. Halas, V.N. Manoharan, P. Nordlander, G. Shvets, F. Capasso, Science 328, 1135 (2010)CrossRefGoogle Scholar
  40. 40.
    R.F. Oulton, V.J. Sorger, T. Zentgraf, R.M. Ma, C. Gladden, L. Dai, G. Bartal, X. Zhang, Nature 461, 629 (2009)CrossRefGoogle Scholar
  41. 41.
    B.J. Lawrie, K.W. Kim, D.P. Norton, R.F. Haglund Jr., Nano Lett. 12, 6152 (2012)CrossRefGoogle Scholar
  42. 42.
    M. Jeem, L. Zhang, J. Ishioka, T. Shibayama, T. Iwasaki, T. Kato, S. Watanabe, Nano Lett. 17, 2088 (2017)CrossRefGoogle Scholar
  43. 43.
    Y.P. Zhang, S.H. Lee, K.R. Reddy, A.L. Gopalan, K.P. Lee, J. Appl. Polym. Sci. 104, 2743 (2007)CrossRefGoogle Scholar
  44. 44.
    K.R. Reddy, K.P. Lee, A.L. Gopalan, J. Nanosci. Nanotechnol. 7, 3117 (2007)CrossRefGoogle Scholar
  45. 45.
    A.M. Showkat, Y.P. Zhang, M.S. Kim, A.L. Gopalan, K.R. Reddy, K.P. Lee, Bull. Korean Chem. Soc. 28, 1985 (2007)CrossRefGoogle Scholar
  46. 46.
    K.R. Reddy, K.P. Lee, A.L. Gopalan, J. Colloid Surf. A 320, 49 (2008)CrossRefGoogle Scholar
  47. 47.
    K.R. Reddy, K. Nakata, T. Ochiai, T. Murakami, D.A. Tryk, A. Fujishima, J. Nanosci. Nanotech. 11, 3692 (2011)CrossRefGoogle Scholar
  48. 48.
    K.R. Reddy, V.G. Gomes, M. Hassan, Mater. Res. Express 1, 015012 (2014)CrossRefGoogle Scholar
  49. 49.
    M. Cakici, K.R. Reddy, F.A. Marroquin, J. Chem. Eng. J. 309, 151 (2017)CrossRefGoogle Scholar
  50. 50.
    M. Hassan, E. Haque, K.R. Reddy, A.I. Minett, J. Chen, V.G. Gomes, Nanoscale 6, 11988 (2014)CrossRefGoogle Scholar
  51. 51.
    J. Rodriguez-Carvvajal, Phys. B 192, 55–69 (1993)CrossRefGoogle Scholar
  52. 52.
    K.R. Reddy, B.C. Sin, C.H. Yoo, W. Park, K.S. Ryu, J.S. Lee, D. Sohn, Y. Lee, Scripta Mater. 58, 1010 (2008)CrossRefGoogle Scholar
  53. 53.
    J. Gangwar, B.K. Gupta, S. Tripathi, A. Srivastava, Nanoscale 7, 13313 (2015)CrossRefGoogle Scholar
  54. 54.
    Y. Kim, T. Hsu, Surf. Sci. 258, 131 (1991)CrossRefGoogle Scholar
  55. 55.
    F.P. Sabino, L.N.D. Oliveira, Phys. Rev. B 90, 155206 (2014)CrossRefGoogle Scholar
  56. 56.
    P. Thompson, D.E. Cox, J.B. Hastings, J. Appl. Cryst. 20, 79 (1987)CrossRefGoogle Scholar
  57. 57.
    V. Singh, RPS Chakradhar, J.L. Rao, K. Shamery, M. Al Haase, Y.D. Jho, Appl. Phys. B 107, 489 (2012)CrossRefGoogle Scholar
  58. 58.
    T.M. Saadi Al, N.A. Hameed, Adv. Phys. Theor. Appl. 44, 139 (2015)Google Scholar
  59. 59.
    H. Xuanmeng, Z. Zhenfeng, L. Hui, F. Lu, Rare Met. Mater. Eng. 45, 1659 (2016)CrossRefGoogle Scholar
  60. 60.
    V.S. Jaswal, A.K. Arora, M. Kinger, V.D. Gupta, J. Singh, Orient. J. Chem. 30, 559 (2014)CrossRefGoogle Scholar
  61. 61.
    A. Patra, R.E. Tallman, B.A. Weinstein, Opt. Mater. 27, 1396 (2005)CrossRefGoogle Scholar
  62. 62.
    T. Sato, J. Appl. Chem. 12, 9 (1962)CrossRefGoogle Scholar
  63. 63.
    W. Strek, P. Deren, B. Jezowska-Trzebiatowska, B Phys. 152, 379 (1988)CrossRefGoogle Scholar
  64. 64.
    D.L. Russell, K. Holiday, M. Grinberg, D.B. Hollis, Phys. Rev. B 59, 13712 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Sonal P. Ghawade
    • 1
  • Kavita A. Deshmukh
    • 2
  • D. R. Peshwe
    • 2
  • S. J. Dhoble
    • 3
  • Abhay D. Deshmukh
    • 1
  1. 1.Department of Physics, Energy Materials and Devices LaboratoryRTM Nagpur UniversityNagpurIndia
  2. 2.Department of MMEVisvesvarya National Institute of TechnologyNagpurIndia
  3. 3.Department of Physics, Nanomaterials Research LaboratoryRTM Nagpur UniversityNagpurIndia

Personalised recommendations