Advertisement

Structures and Properties of New Cadmium(II) and Copper(II) Metal–Organic Frameworks Based on Flexible Bridged 1,4-bi(1H-imidazol-1-yl)butane Ligand

  • Jia-Jun Wang
  • Ya-Nan Wei
  • Zhong-Hui Wang
  • Han-Yang Sun
  • Xue Li
  • Chun-Ling Liu
  • Shou-Cai Zhang
  • Chuan-Bi Li
  • Zi-Hong Yan
  • Chao-Hui Zhang
Article
  • 129 Downloads

Abstract

Two new metal–organic frameworks (MOFs) based on cadmium(II) ions, 1,2-benzenedicarboxylic acid (BDC), flexible ligand 1,4-bi(1H-imidazol-1-yl)butane (BIIM), coordinated water molecules, [(BIIM)(BDC)(H2O)Cd]3n (1) and copper(II) ions, BIIM, coordinated water, free thiophene-2,5-dicarboxylate (TDC), free water, {[(BIIM)4(H2O)4Cu2]·(TDC)2·(H2O)12}n (2) are prepared and characterized by X-ray diffraction, thermal gravimetric analysis (TGA), infrared (IR) spectrum and the photoluminescence property for complex (1). The X-ray diffraction analysis reveals that the structures of complexes 1 and 2 are 2D structures through the C–H···π stacking interactions (for 1) and the BIIM bridging connections (for 2). The IR spectrum for 1 and 2 are presented in the paper, for 1, the strong peaks at 1399 and 1573 cm−1 are owing to the carboxylic CO2 symmetry and asymmetry stretching vibrations of BDC. The features of the IR spectrum are consistent with the single crystal structures. The TGA reveal the water is the first lost material from complex, then the ligands removed, and finally the residues of these two complexes are the metal oxide.

Keywords

Crystal structures IR spectrum Thermal analysis Photoluminescence property 

Notes

Funding

The funding was provided by Jilin province science and technology development plan item (Grant No. 20140204080GX).

Supplementary material

10904_2017_681_MOESM1_ESM.cif (338 kb)
Supplementary material 1 (CIF 338 KB)
10904_2017_681_MOESM2_ESM.cif (28 kb)
Supplementary material 2 (CIF 27 KB)

References

  1. 1.
    B. Li, H.M. Wen, W. Zhou, B.L. Chen, J. Phys. Chem. Lett. 5, 3468–3479 (2014)CrossRefGoogle Scholar
  2. 2.
    J.R. Li, R.J. Kuppler, H.C. Zhou, Chem. Soc. Rev. 38, 1477–1504 (2009)CrossRefGoogle Scholar
  3. 3.
    S.S. Nagarkar, A.V. Desai, S.K. Ghosh, Chem. Commun. 50, 8915–8918 (2014)CrossRefGoogle Scholar
  4. 4.
    S.L. Jackson, A. Rananaware, C. Rix, S.V. Bhosale, K. Latham, Cryst. Growth Des. 16, 3067–3071 (2016)CrossRefGoogle Scholar
  5. 5.
    S.S. Nagarkar, T. Saha, A.V. Desai, P. Talukdar, S.K. Ghosh, Sci. Rep. 4, 7053 (2014)CrossRefGoogle Scholar
  6. 6.
    F.Y. Yi, D.X. Chen, M.K. Wu, L. Han, H.L. Jiang, Chempluschem 81, 675–690 (2016)CrossRefGoogle Scholar
  7. 7.
    Y.B. Huang, J. Liang, X.S. Wang, R. Cao, Chem. Soc. Rev. 46, 126–157 (2017)CrossRefGoogle Scholar
  8. 8.
    M. Kurmoo, Chem. Soc. Rev. 38, 1353–1379 (2009)CrossRefGoogle Scholar
  9. 9.
    X.Z. Lian, Y. Fang, E. Joseph, Q. Wang, J.L. Li, S. Banerjee, C. Lollar, X. Wang, H.C. Zhou, Chem. Soc. Rev. 46, 3386–3401 (2017)CrossRefGoogle Scholar
  10. 10.
    W.G. Lu, Z.W. Wei, Z.Y. Gu, T.F. Liu, J. Park, J. Park, J. Tian, M.W. Zhang, Q. Zhang, T. Gentle, M. Bosch III, H.C. Zhou, Chem. Soc. Rev. 43, 5561–5593 (2014)CrossRefGoogle Scholar
  11. 11.
    Z.J. Lin, J. Lu, M.C. Hong, R. Cao, Chem. Soc. Rev. 43, 5867–5895 (2014)CrossRefGoogle Scholar
  12. 12.
    Y.Y. Liu, J.F. Ma, J. Yang, Z.M. Su, Inorg. Chem. 46, 3027–3037 (2007)CrossRefGoogle Scholar
  13. 13.
    Y. Yang, P. Du, J.F. Ma, W.Q. Kan, B. Liu, J. Yang, Cryst. Growth Des. 11, 5540–5553 (2011)CrossRefGoogle Scholar
  14. 14.
    Y. Zhang, J. Yang, Y. Yang, J. Guo, J.F. Ma, Cryst. Growth Des. 12, 4060–4071 (2012)CrossRefGoogle Scholar
  15. 15.
    Y.M. Li, C.Y. Xiao, X.D. Zhang, Y.Q. Xu, H.J. Lun, J.Y. Niu, CrystEngComm 15, 7756–7762 (2013)CrossRefGoogle Scholar
  16. 16.
    A. Thirumurugan, S. Natarajan, Dalton Trans. 18, 2923–2928 (2004)CrossRefGoogle Scholar
  17. 17.
    M.V. Roux, M. Temprado, P. Jimenez, C. Foces-Foces, R. Notario, S.P. Verevkin, J.F. Liebman, J. Phys. Chem. A 110, 12477–12483 (2006)CrossRefGoogle Scholar
  18. 18.
    M. Prabu, K.S. Asha, M. Sinha, A. Poduvala, S. Mandal, CrystEngComm 18, 536–543 (2016)CrossRefGoogle Scholar
  19. 19.
    J. Guo, D. Sun, L.L. Zhang, Q. Yang, X.L. Zhao, D.F. Sun, Cryst. Growth Des. 12, 5649–5654 (2012)CrossRefGoogle Scholar
  20. 20.
    P.Y. Wu, Y.H. Liu, Y. Liu, J.R. Wang, Y. Li, W. Liu, J. Wang, Inorg. Chem. 54, 11046–11048 (2015)CrossRefGoogle Scholar
  21. 21.
    J.F. Ma, J.F. Liu, Y. Xing, H.Q. Jia, Y.H. Lin, J. Chem. Soc. Dalton Trans. 14, 2403–2407 (2000)CrossRefGoogle Scholar
  22. 22.
    G.M. Sheldrick, Acta Cryst. A 64, 112–122 (2008)CrossRefGoogle Scholar
  23. 23.
    L.J. Farrugia, J. Appl. Cryst. 45, 849–854 (2012)CrossRefGoogle Scholar
  24. 24.
    K. Brandenburg, DIAMOND. Visual crystal structure information System. Version 3.2i; Crystal impact. (Bonn, Germany, 2012), http://www.crystalimpact.com/diamond. Accessed June and July 2017
  25. 25.
    A.G. Orpen, L. Brammer, F.H. Allen, O. Kennard, D.G. Watson, R. Taylor, J. Chem. Soc. Dalton Trans. S1–S83 (1989). doi: 10.1039/DT98900000S1
  26. 26.
    A.J. Carty, N.J. Taylor, Inorg. Chem. 16, 177–181 (1977)CrossRefGoogle Scholar
  27. 27.
    C. Chen, J.F. Ma, B. Liu, J. Yang, Y.Y. Liu, Cryst. Growth Des. 11, 4491–4497 (2011)CrossRefGoogle Scholar
  28. 28.
    A.L. Spek, Acta Cryst. D 65, 148–155 (2009)CrossRefGoogle Scholar
  29. 29.
    N.N. Majeed, A.F. Abbas, Res. J. Pharm. Biol. Chem. Sci. 5, 1520–1527 (2014)Google Scholar
  30. 30.
    F. Dupeyrat, C. Vidaud, A. Lorphelin, C. Berthomieu, J. Biol. Chem. 279, 48091–48101 (2004)CrossRefGoogle Scholar
  31. 31.
    S.L. Zhang, K.H. Michaelian, G.R. Loppnow, J. Phys. Chem. A 102, 461–470 (1998)CrossRefGoogle Scholar
  32. 32.
    S. Mohan, N. Sundaraganesan, Proc. Indian Natl. Sci. Acad. A 57, 151–154 (1991)Google Scholar
  33. 33.
    A.V. Friderichsen, J.G. Radziszewski, M.R. Nimlos, P.R. Winter, D.C. Dayton, D.E. David, G. Barney Ellison, J. Am. Chem. Soc. 123, 1977–1988 (2001)CrossRefGoogle Scholar
  34. 34.
    R. Ramasamy, Am. J. Phys. 8, 51–55 (2015)Google Scholar
  35. 35.
    M.F. Beegum, L.U. Kumari, B. Harikumar, H.T. Varghese, C.Y. Panicker, Rasayan J. Chem. 1, 258–262 (2008)Google Scholar
  36. 36.
    L.P. Liu, Z. Wang, Z.K. Zhao, Y.J. Zhao, F. Li, L.B. Yang, J. Solid State Electrochem. 20, 699–712 (2016)CrossRefGoogle Scholar
  37. 37.
    S. Gunasekaran, R.K. Natarajan, D. Syamala, R. Rathikha, Indian J. Pure Appl. Phys. 44, 315–319 (2006)Google Scholar
  38. 38.
    C. Nagy, Structural investigation on some molecular complexes of biomedical interest. (Doctoral Thesis Summary), Faculty of Physics, Babes-Bolyai University, Cluj-Napoca, (2011)Google Scholar
  39. 39.
    H. Ou-Yang, E.P. Paschalis, A.L. Boskey, R. Mendelsohn, Biopolymers 57, 129–139 (2000)CrossRefGoogle Scholar
  40. 40.
    M. Karlowatz, M. Kraft, B. Mizaikoff, Anal. Chem. 76, 2643–2648 (2004)CrossRefGoogle Scholar
  41. 41.
    J. Coates, Interpretation of Infrared Spectra, A Practical Approach. Encyclopedia of Analytical Chemistry, (Wiley, Chichester, 2006), pp. 1–23Google Scholar
  42. 42.
    R. Santhakumari, K. Ramamurthi, H. Stoeckli-Evans, R. Hema, W. Nirmala, Phys. B 406, 1872–1876 (2011)CrossRefGoogle Scholar
  43. 43.
    P. Mani, S. Suresh, Rasayan J. Chem. 2, 307–311 (2009)Google Scholar
  44. 44.
    T.S.R. Devi, S. Gayathri, Int. J. Pharm. Sci. Rev. Res. 2, 106–110 (2010)Google Scholar
  45. 45.
    J.A. Collado, F.J. Ramirez, J. Raman Spectrosc. 30, 391–397 (1999)CrossRefGoogle Scholar
  46. 46.
    S. Nandi, P.A. Arnold, B.K. Carpenter, M.R. Nimlos, D.C. Dayton, G.B. Ellison, J. Phys. Chem. A 105, 7514–7524 (2001)CrossRefGoogle Scholar
  47. 47.
    S. Pavithraa, R.R.J. Methikkalam, P. Gorai, J.I. Lo, A. Das, B.N.R. Sekhar, T. Pradeep, B.M. Cheng, N.J. Mason, B. Sivaraman, Spectrochim. Acta A Mol. Biomol. Spectrosc. 178, 166–170 (2017)CrossRefGoogle Scholar
  48. 48.
    X.J. Zhang, L.P. Jin, S. Gao, Inorg. Chem. 43, 1600–1602 (2004)CrossRefGoogle Scholar
  49. 49.
    X.J. Zheng, L.P. Jin, S. Gao, S.Z. Lu, New J. Chem. 29, 798–804 (2005)CrossRefGoogle Scholar
  50. 50.
    H.M. Li, J.M. Zhou, W. Shi, X.J. Zhang, Z.J. Zhang, M. Zhang, P. Cheng, CrystEngComm 16, 834–841 (2014)CrossRefGoogle Scholar
  51. 51.
    L. Wen, Z. Lu, J. Lin, Z. Tian, H. Zhu, Q. Meng, Cryst. Growth Des. 7, 93–99 (2007)CrossRefGoogle Scholar
  52. 52.
    L.P. Zhang, J.F. Ma, J. Yang, Y.Y. Pang, J.C. Ma, Inorg. Chem. 49, 1535–1550 (2010)CrossRefGoogle Scholar
  53. 53.
    H.Y. Liu, H. Wu, J.F. Ma, Y.Y. Liu, B. Liu, J. Yang, Cryst. Growth Des. 10, 4795–4805 (2010)CrossRefGoogle Scholar
  54. 54.
    Z.F. Chen, R.G. Xiong, J. Zhang, X.T. Chen, Z.L. Xue, X.Z. You, Inorg. Chem. 40, 4075–4077 (2001)CrossRefGoogle Scholar
  55. 55.
    J.C. Dai, X.T. Wu, Z.Y. Fu, C.P. Cui, S.M. Hu, W.X. Du, L.M. Wu, H.H. Zhang, R.O. Sun, Inorg. Chem. 41, 1391–1396 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Key Laboratory of Preparation and Application of Environmental Friendly Materials, Ministry of EducationJilin Normal UniversityChangchunPeople’s Republic of China
  2. 2.Sulfuric Acid PlantJilin Petrochemical Company Acrylonitrile FactoryJilinPeople’s Republic of China
  3. 3.College of Chemistry and Environmental SciencesKashgar UniversityKashgarPeople’s Republic of China
  4. 4.Department of Computer Science, Mathematics and PhysicsShenyang Medical CollegeShenyangPeople’s Republic of China

Personalised recommendations