Modification of Cu/Zn/Al2O3 Catalyst by Activated Carbon Based Metal Organic Frameworks as Precursor for Hydrogen Production

  • Ali Dehghani
  • Maryam Ranjbar
  • Ali Eliassi


In this study, Cu/Zn/Al2O3-AC (AC = activated carbon) catalyst was synthesized and evaluated for dimethoxymethane (DMM) reformation to hydrogen. The Cu/Zn/Al2O3-AC catalyst was prepared using high surface area metal organic frameworks (MOFs) consisting of Cu3(BTC)2 (MOF-199) and Zn4O(BDC)3 (MOF-5) for Cu(II) and Zn(II) sources respectively, as precursors while γ-Al2O3 was applied as support. The synthesized catalyst was investigated by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Brunauer–Emmett–Teller analysis (BET), Temperature programmed desorption (NH3-TPD) and Energy-dispersive X-ray spectroscopy (EDX) techniques. Complete DMM conversion was observed over Cu/Zn/Al2O3-AC catalyst (Cu:Zn:Al mole ratio of 6:3:2) under atmospheric pressure, T = 533 K, GHSV = 20 NL h−1 gcat−1, N2/H2O/DMM = 24/5/1 volume percent (vol%) with hydrogen productivity of 12.8 L H2 h−1 gcat−1 and 64% hydrogen concentration. Application of MOFs as precursors and modified activated carbon as an acidic component provided the catalyst with the porous structure and high specific surface area for the hydrolysis of DMM, subsequently, high selectivity and productivity of hydrogen was obtained.


Hydrogen production Cu/Zn/Al2O3 catalyst Dimethoxymethane Metal organic frameworks 



We acknowledge the support of the Iranian Research Organization for Science and Technology, and Iranian National Science Foundation (INSF).


  1. 1.
    K.A. Thavornprasert, M. Capron, L. Jalowiecki-Duhamel, F. Dumeignil, Catal. Sci. Technol. 6, 958 (2016)CrossRefGoogle Scholar
  2. 2.
    D. Franck, M. Capron, B. Katryniok, R. Wojcieszak, A. Löfberg, J.-S. Girardon, S. Desset, M. Araque-Marin, L. Jalowiecki-Duhamel, S. Paul, J. Jpn. Pet. Inst. 58, 257 (2015)CrossRefGoogle Scholar
  3. 3.
    P. Poizot, F. Dolhem, Energ. Environ. Sci. 4, 2003 (2011)CrossRefGoogle Scholar
  4. 4.
    WO Pat. 090294 (2008)Google Scholar
  5. 5.
    EP Pat. 1914293 (2008)Google Scholar
  6. 6.
    R. Chetty, K. Scott, J. Power Sour. 173, 166 (2007)CrossRefGoogle Scholar
  7. 7.
    F. Vigier, C. Coutanceau, J.M. Leger, J.L. Dubois, J. Power Sour. 175, 82 (2008)CrossRefGoogle Scholar
  8. 8.
    K. Thavornprasert, M. Capron, L. Duhamel, O. Gardoll, Appl Catal B Environ. 145, 126 (2014)CrossRefGoogle Scholar
  9. 9.
    J.C. Ball, C. Lapin, J. Buckingham, E. Frame, D. Yost, M. Gonzalez, E. Liney, M. Natarajan, J. Wallace, SAE Trans. Sect. 4, 2176 (2001)Google Scholar
  10. 10.
    M.M. Maricq, R.E. Chase, D.H. Podsiadlik, W.O. Siegl, E.W. Kaiser, SAE Trans. Sect. 107, 1504 (1998)Google Scholar
  11. 11.
    Y. Meng, T. Wang, S. Chen, Y. Zhao, X. Ma, J. Gong, Appl. Catal. B: Environ. 160, 161 (2014)CrossRefGoogle Scholar
  12. 12.
    S. Chen, Y. Meng, Y. Zhao, X. Ma, J. Gong, AIChE J. 59, 2587 (2013)CrossRefGoogle Scholar
  13. 13.
    J. Lojewska, J. Wasilewski, K. Terelak, T. Lojewski, A. Kolodziej, Catal. Commun. 9, 1833 (2008)CrossRefGoogle Scholar
  14. 14.
    Y. Fu, J. Shen, Chem. Commun. 21, 2127 (2007)Google Scholar
  15. 15.
    A. Pechenkin, S. Badmaev, V. Belyaed, V. Sobyanin, Appl. Catal. B Environ. 166, 166 (2014)Google Scholar
  16. 16.
    T. Kotbagi, D.L. Nguyen, C. Lancelot, C. Lamonier, K.A. Thavornprasert, Z. Wenli, M. Capron, L. Jalowiecki-Duhamel, S. Umbarkar, M. Dongare, F. Dumeignil, Chem. Sus. Chem. 5, 1467 (2012)CrossRefGoogle Scholar
  17. 17.
    T.A. Vu, H.L.G.H. Le, C.D. Dao, L.Q. Dang, K.T. Nguyen, P.T. Dang, H.T.K. Tran, Q.T. Duong, T.V. Nguyen, G.D. Lee, RSC Adv. 78, 41185 (2014)CrossRefGoogle Scholar
  18. 18.
    J.L. Rowsell, O.M. Yaghi, Micropor. Mesopor. Mat. 73, 3 (2004)CrossRefGoogle Scholar
  19. 19.
    F. Maya, C. Palomino Cabello, J.M. Estela, V. Cerdà, G.T. Palomino, Anal. Chem. 87, 7545 (2015)CrossRefGoogle Scholar
  20. 20.
    R. Ricco, L. Malfatti, M. Takahashi, A.J. Hill, P. Falcaro, J. Mater. Chem. A 1, 13033 (2013)CrossRefGoogle Scholar
  21. 21.
    M.Y. Masoomi, S. Beheshti, A. Morsali, J. Mater. Chem. A 2, 16863 (2014)CrossRefGoogle Scholar
  22. 22.
    X. Zhang, X.H. Zang, J.T. Wang, C. Wang, Q.H. Wu, Z. Wang, Microchim. Acta 182, 2353 (2015)CrossRefGoogle Scholar
  23. 23.
    M.Y. Masoomi, M. Bagheri, A. Morsali, Ultrason. Sonochem. 33, 54 (2016)CrossRefGoogle Scholar
  24. 24.
    X. Liu, C. Wang, Z. Wang, Q. Wu, Z. Wang, Microchim. Acta 182, 1903 (2015)CrossRefGoogle Scholar
  25. 25.
    L. Aboutorabi, A. Morsali, Ultrason Sonochem. 28, 240 (2016)CrossRefGoogle Scholar
  26. 26.
    M.Y. Masoomi, A. Morsali, Coordin. Chem. Rev. 256, 2921 (2012)CrossRefGoogle Scholar
  27. 27.
    A. Corma, H. García, F.X. Llabrés i Xamena, Chem. Rev. 110, 4606 (2010)CrossRefGoogle Scholar
  28. 28.
    F. Raoof, M. Taghizadeh, A. Eliassi, F. Yaripour, Fuel 87, 2967 (2008)CrossRefGoogle Scholar
  29. 29.
    W. LiPing, X. Bin, W. Ying, Sci. China Chem. 54, 1 (2011)Google Scholar
  30. 30.
    S. Lee, S. Park, Int. J. Hydrogen Energy 36, 8381 (2011)CrossRefGoogle Scholar
  31. 31.
    A. Bagheri, M. Taghizadeh, M. Behbahani, A. Asgharinezhad, M. Salarian, A. Dehghani, H. Ebrahimzadeh, M. Amini, Talanta 99, 132 (2012)CrossRefGoogle Scholar
  32. 32.
    T. Semelsberger, K. Ott, R. Borup, H. Greene, Appl. Catal. A 309, 210 (2006)CrossRefGoogle Scholar
  33. 33.
    M. Barrosoa, M. Gomeza, J. Gamboab, L. Arru, J. Phys. Chem. Solids 67, 1583 (2006)CrossRefGoogle Scholar
  34. 34.
    M. Sohrabi, Z. Matbouie, A. Asgharinezhad, A. Dehghani, Microchim Acta 180, 589 (2013)CrossRefGoogle Scholar
  35. 35.
    S.J. Gregg, K.S. Sing, Adsorption, surface area, and porosity, (Academic Press, New York, 1982)Google Scholar
  36. 36.
    J. Cai, Y. Fu, Q. Sun, M. Jia, J. Shen, Chin. J. Catal. 34. 2110 (2013)CrossRefGoogle Scholar
  37. 37.
    Z. P. Lu, H. B. Yin, A. L. Wang, J. Hu, W. P. Xue, H. X. Yin, S. X. Liu. J. Ind. Eng. Chem. 37, 208 (2016)CrossRefGoogle Scholar
  38. 38.
    L. Pettersson, K. SjÖStrÖM. Combust. Sci. Tech. 80, 265 (1991)CrossRefGoogle Scholar
  39. 39.
    S. Badmaev, A. Pechenkin, V. Belyaev, V. Sobyanin. Int. J. Hydrogen Energy 1, 1 (2015)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  1. 1.Department of Chemical TechnologiesIranian Research Organization for Science and Technology (IROST)TehranIran

Personalised recommendations