Modification of Cu/Zn/Al2O3 Catalyst by Activated Carbon Based Metal Organic Frameworks as Precursor for Hydrogen Production
Abstract
In this study, Cu/Zn/Al2O3-AC (AC = activated carbon) catalyst was synthesized and evaluated for dimethoxymethane (DMM) reformation to hydrogen. The Cu/Zn/Al2O3-AC catalyst was prepared using high surface area metal organic frameworks (MOFs) consisting of Cu3(BTC)2 (MOF-199) and Zn4O(BDC)3 (MOF-5) for Cu(II) and Zn(II) sources respectively, as precursors while γ-Al2O3 was applied as support. The synthesized catalyst was investigated by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Brunauer–Emmett–Teller analysis (BET), Temperature programmed desorption (NH3-TPD) and Energy-dispersive X-ray spectroscopy (EDX) techniques. Complete DMM conversion was observed over Cu/Zn/Al2O3-AC catalyst (Cu:Zn:Al mole ratio of 6:3:2) under atmospheric pressure, T = 533 K, GHSV = 20 NL h−1 gcat−1, N2/H2O/DMM = 24/5/1 volume percent (vol%) with hydrogen productivity of 12.8 L H2 h−1 gcat−1 and 64% hydrogen concentration. Application of MOFs as precursors and modified activated carbon as an acidic component provided the catalyst with the porous structure and high specific surface area for the hydrolysis of DMM, subsequently, high selectivity and productivity of hydrogen was obtained.
Keywords
Hydrogen production Cu/Zn/Al2O3 catalyst Dimethoxymethane Metal organic frameworksNotes
Acknowledgements
We acknowledge the support of the Iranian Research Organization for Science and Technology, and Iranian National Science Foundation (INSF).
References
- 1.K.A. Thavornprasert, M. Capron, L. Jalowiecki-Duhamel, F. Dumeignil, Catal. Sci. Technol. 6, 958 (2016)CrossRefGoogle Scholar
- 2.D. Franck, M. Capron, B. Katryniok, R. Wojcieszak, A. Löfberg, J.-S. Girardon, S. Desset, M. Araque-Marin, L. Jalowiecki-Duhamel, S. Paul, J. Jpn. Pet. Inst. 58, 257 (2015)CrossRefGoogle Scholar
- 3.P. Poizot, F. Dolhem, Energ. Environ. Sci. 4, 2003 (2011)CrossRefGoogle Scholar
- 4.WO Pat. 090294 (2008)Google Scholar
- 5.EP Pat. 1914293 (2008)Google Scholar
- 6.R. Chetty, K. Scott, J. Power Sour. 173, 166 (2007)CrossRefGoogle Scholar
- 7.F. Vigier, C. Coutanceau, J.M. Leger, J.L. Dubois, J. Power Sour. 175, 82 (2008)CrossRefGoogle Scholar
- 8.K. Thavornprasert, M. Capron, L. Duhamel, O. Gardoll, Appl Catal B Environ. 145, 126 (2014)CrossRefGoogle Scholar
- 9.J.C. Ball, C. Lapin, J. Buckingham, E. Frame, D. Yost, M. Gonzalez, E. Liney, M. Natarajan, J. Wallace, SAE Trans. Sect. 4, 2176 (2001)Google Scholar
- 10.M.M. Maricq, R.E. Chase, D.H. Podsiadlik, W.O. Siegl, E.W. Kaiser, SAE Trans. Sect. 107, 1504 (1998)Google Scholar
- 11.Y. Meng, T. Wang, S. Chen, Y. Zhao, X. Ma, J. Gong, Appl. Catal. B: Environ. 160, 161 (2014)CrossRefGoogle Scholar
- 12.S. Chen, Y. Meng, Y. Zhao, X. Ma, J. Gong, AIChE J. 59, 2587 (2013)CrossRefGoogle Scholar
- 13.J. Lojewska, J. Wasilewski, K. Terelak, T. Lojewski, A. Kolodziej, Catal. Commun. 9, 1833 (2008)CrossRefGoogle Scholar
- 14.Y. Fu, J. Shen, Chem. Commun. 21, 2127 (2007)Google Scholar
- 15.A. Pechenkin, S. Badmaev, V. Belyaed, V. Sobyanin, Appl. Catal. B Environ. 166, 166 (2014)Google Scholar
- 16.T. Kotbagi, D.L. Nguyen, C. Lancelot, C. Lamonier, K.A. Thavornprasert, Z. Wenli, M. Capron, L. Jalowiecki-Duhamel, S. Umbarkar, M. Dongare, F. Dumeignil, Chem. Sus. Chem. 5, 1467 (2012)CrossRefGoogle Scholar
- 17.T.A. Vu, H.L.G.H. Le, C.D. Dao, L.Q. Dang, K.T. Nguyen, P.T. Dang, H.T.K. Tran, Q.T. Duong, T.V. Nguyen, G.D. Lee, RSC Adv. 78, 41185 (2014)CrossRefGoogle Scholar
- 18.J.L. Rowsell, O.M. Yaghi, Micropor. Mesopor. Mat. 73, 3 (2004)CrossRefGoogle Scholar
- 19.F. Maya, C. Palomino Cabello, J.M. Estela, V. Cerdà, G.T. Palomino, Anal. Chem. 87, 7545 (2015)CrossRefGoogle Scholar
- 20.R. Ricco, L. Malfatti, M. Takahashi, A.J. Hill, P. Falcaro, J. Mater. Chem. A 1, 13033 (2013)CrossRefGoogle Scholar
- 21.M.Y. Masoomi, S. Beheshti, A. Morsali, J. Mater. Chem. A 2, 16863 (2014)CrossRefGoogle Scholar
- 22.X. Zhang, X.H. Zang, J.T. Wang, C. Wang, Q.H. Wu, Z. Wang, Microchim. Acta 182, 2353 (2015)CrossRefGoogle Scholar
- 23.M.Y. Masoomi, M. Bagheri, A. Morsali, Ultrason. Sonochem. 33, 54 (2016)CrossRefGoogle Scholar
- 24.X. Liu, C. Wang, Z. Wang, Q. Wu, Z. Wang, Microchim. Acta 182, 1903 (2015)CrossRefGoogle Scholar
- 25.L. Aboutorabi, A. Morsali, Ultrason Sonochem. 28, 240 (2016)CrossRefGoogle Scholar
- 26.M.Y. Masoomi, A. Morsali, Coordin. Chem. Rev. 256, 2921 (2012)CrossRefGoogle Scholar
- 27.A. Corma, H. García, F.X. Llabrés i Xamena, Chem. Rev. 110, 4606 (2010)CrossRefGoogle Scholar
- 28.F. Raoof, M. Taghizadeh, A. Eliassi, F. Yaripour, Fuel 87, 2967 (2008)CrossRefGoogle Scholar
- 29.W. LiPing, X. Bin, W. Ying, Sci. China Chem. 54, 1 (2011)Google Scholar
- 30.S. Lee, S. Park, Int. J. Hydrogen Energy 36, 8381 (2011)CrossRefGoogle Scholar
- 31.A. Bagheri, M. Taghizadeh, M. Behbahani, A. Asgharinezhad, M. Salarian, A. Dehghani, H. Ebrahimzadeh, M. Amini, Talanta 99, 132 (2012)CrossRefGoogle Scholar
- 32.T. Semelsberger, K. Ott, R. Borup, H. Greene, Appl. Catal. A 309, 210 (2006)CrossRefGoogle Scholar
- 33.M. Barrosoa, M. Gomeza, J. Gamboab, L. Arru, J. Phys. Chem. Solids 67, 1583 (2006)CrossRefGoogle Scholar
- 34.M. Sohrabi, Z. Matbouie, A. Asgharinezhad, A. Dehghani, Microchim Acta 180, 589 (2013)CrossRefGoogle Scholar
- 35.S.J. Gregg, K.S. Sing, Adsorption, surface area, and porosity, (Academic Press, New York, 1982)Google Scholar
- 36.J. Cai, Y. Fu, Q. Sun, M. Jia, J. Shen, Chin. J. Catal. 34. 2110 (2013)CrossRefGoogle Scholar
- 37.Z. P. Lu, H. B. Yin, A. L. Wang, J. Hu, W. P. Xue, H. X. Yin, S. X. Liu. J. Ind. Eng. Chem. 37, 208 (2016)CrossRefGoogle Scholar
- 38.L. Pettersson, K. SjÖStrÖM. Combust. Sci. Tech. 80, 265 (1991)CrossRefGoogle Scholar
- 39.S. Badmaev, A. Pechenkin, V. Belyaev, V. Sobyanin. Int. J. Hydrogen Energy 1, 1 (2015)Google Scholar