Skip to main content
Log in

Synthesis and Characterization of New Organometallic Hybrid Material LCP-1 Based on MOF (Metal–Organic Framework) and Maghnite-H+, a Protons Exchanged Montmorillonite Clay, as Catalytic Support

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In this work, a new 3D crystalline metal–organic framework formulated as [Zn2(BTC)4, (BTC: 1,2,4,5-Benzenetetracarboxylate)] and called LCP-1 (LCP: Laboratoire de Chimie des Polymères), with unsaturated coordinated Zn(II) sites as metal ion and pyromellitic acid (H4BTC: 1,2,4,5-Benzenetetracarboxylic acid) as organic ligand, has been successfully synthesized under solvothermal conditions. In-Situ polymerization of this material was also carried out using an amount of clay called Maghnite-H+, an acid-exchanged montmorillonite, as an eco-catalyst with the aim to respect the principles of green chemistry, to give a new hybrid composite material LCP-1/Mag-H+ with a better yield, a significantly reduced time and temperature reaction than those of LCP-1. LCP-1 and LCP-1/Mag-H+ have been structurally characterized and established by fourier transform infrared spectroscopy (FT-IR). The morphology of these compounds was studied by the X-ray diffraction (XRD) and revealed a highly crystalline and ordered structure for both LCP-1 and LCP-1/Mag-H+. FT-IR and XRD spectra showed also that the stability and structural integrity of LCP-1 and LCP-1/Mag-H+ was maintained even after being evacuated from the DMF solvent molecules. The thermal stability identified by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) showed that Maghnite-H+, as inorganic support, has also improved the thermal stability of LCP-1 compound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. F.R. Ribeiro, A.E. Rodrigues, L.D. Rollmann, C. Naccache, Zeolites: Science and Technology, vol. 80 (NATO ASI Series, 1984). ISBN:978-94-009-6130-2

  2. A. Dyer, An Introduction to Zeolite Molecular Sieves (Wiley, Chichester, 1989). doi: 10.1002/sia.740140410

    Google Scholar 

  3. W. Hölderich, M. Hesse, F. Näumann, Angew. Chem. Int. Ed Engl. 27, 226 (1988). doi:10.1002/anie.198802261

    Article  Google Scholar 

  4. Y. Horiuchi, T. Toyao, M. Matsuoka, in Metal–Organic Framework (MOF) and Porous Coordination Polymer (PCP)-Based Photocatalysts, ed. by H. Yamashita, H. Li. Nanostructured Photocatalysts. Nanostructure Science and Technology (Springer, Cham, 2016), pp. 479–489. doi: 10.1007/978-3-319-26079-2_27

    Chapter  Google Scholar 

  5. S.R. Batten, N.R. Champness, Philos. Trans. A Math. Phys. Eng. Sci. 375, 2084 (2017). doi:10.1098/rsta.2016.0032

    Article  Google Scholar 

  6. D.J. Tranchemontagne, J.L. Mendoza-Cortes, Chem. Soc. Rev. 38, 1257 (2009). doi:10.1039/B817735J

    Article  CAS  Google Scholar 

  7. M. Allendorf, C.A. Bauer, R.K. Bhakta, R.J.T. Houk, Chem. Soc. Rev. 38, 1330 (2009). doi:10.1039/b802352m

    Article  CAS  Google Scholar 

  8. J.J. Perry, IV,J.A. Perman, M.J. Zaworotko, Chem. Soc. Rev. 38, 1400 (2009). doi:10.1039/B807086P

    Article  CAS  Google Scholar 

  9. S. Kitagawa, M. Kondo, Bull. Chem. Soc. Jpn. 71, 1739 (1998). doi:10.1246/bcsj.71.1739

    Article  CAS  Google Scholar 

  10. S. Kitagawa, R. Kitaura, S. Noro, Angew. Chem. Int. Ed. 43, 2334 (2004). doi:10.1002/anie.200300610

    Article  CAS  Google Scholar 

  11. S. Furukawa, K. Hirai, K. Nakagawa, Y. Takashima, R. Matsuda, T. Tsuruoka, M. Kondo, R. Haruki, D. Tanaka, H. Sakamoto, S. Shimomura, O. Sakata, S. Kitagawa, Angew. Chem. 121, 1798 (2009). doi:10.1002/ange.200804836

    Article  Google Scholar 

  12. J. Kim, B. Chen, T.M. Reineke, H. Li, M. Eddaoudi, D.B. Moler, M. O’Keeffe, O.M. Yaghi, J. Am. Chem. Soc. 123, 8239 (2001)

    Article  CAS  Google Scholar 

  13. M. Belbachir, A. Bensaoula, U.S. Patent 6,274,527B1 (2006)

  14. C. Yuanjing, L. Bin, H. Huajun, Z. Wei, C. Banglin, Q. Guodong, Acc. Chem. Res. 49, 483 (2016). doi:10.1021/acs.accounts.5b00530

    Article  Google Scholar 

  15. L. Sun, M.G. Campbell, M. Dincă, Angew. Chem. Int. Ed. Engl. 55, 3566 (2016). doi:10.1002/anie.201506219

    Article  CAS  Google Scholar 

  16. F. Bigdeli, H. Ghasempour, A.A. Tehrani, A. Morsali, H. Hosseini-Monfareda, Ultrason. Sonochem. 37, 29 (2017).doi:10.1016/j.ultsonch.2016.12.031

    Article  CAS  Google Scholar 

  17. A. Laybourn, J. Katrib, R.S. Ferrari-John, C.G. Morris, S. Yang, O. Udoudo, T.L. Easun, C. Dodds, N.R. Champness, S.W. Kingman, M. Schröder, J. Mater. Chem. A 5, 7333 (2017). doi:10.1039/C7TA01493G

    Article  CAS  Google Scholar 

  18. T.L. Easun, F. Moreau, Y. Yan, S. Yang, M. Schröder, Chem. Soc. Rev. 46, 239 (2017). doi:10.1039/C6CS00603E

    Article  CAS  Google Scholar 

  19. T. Tsuruoka, T. Matsuyama, A. Miyanaga, T. Ohhashi, Y. Takashima, K. Akamatsu, RSC Adv., 6, 77297 (2016). doi:10.1039/C6RA18340A

    Article  CAS  Google Scholar 

  20. Y. Sun, H.-C. Zhou, Sci. Technol. Adv. Mater. 16, 054202 (2015). doi:10.1088/1468-6996/16/5/054202

    Article  Google Scholar 

  21. M. Belbachir, A. Bensaoula, U.S. Patent 066969.0101 (2001)

  22. F. Reguieg, N. Sahli, M. Belbachir, P.J. Lutz, J. Appl. Pol. Sc. 99, 3147 (2006). doi:10.1002/app.22935

    Article  CAS  Google Scholar 

  23. K. Beloufa, N. Sahli, M. Belbachir, J. Appl. Polym. Sci. 115, 2820 (2010). doi:10.1002/app.30901

    Article  CAS  Google Scholar 

  24. F. Reguieg, N. Sahli, M. Belbachir, Orient. J. Chem. 31, 1645 (2015). doi:10.13005/ojc/310343

    Article  CAS  Google Scholar 

  25. S. Bennabi, M. Belbachir, Adv. Mater. Lett. 6, 271 (2015). doi:10.5185/amlett.2015.5660

    Article  CAS  Google Scholar 

  26. Z. Draoua, A. Harrane, M. Belbachir, J. Macromol. Sci. A 52, 130 (2015). doi: 10.1080/10601325.2015.980763

    Article  CAS  Google Scholar 

  27. F. Hennaoui, M. Belbachir, J. Macromol. Sci. A, 52, 992 (2015). doi:10.1080/10601325.2015.1095602

    Article  CAS  Google Scholar 

  28. M.C. Baghdadli, M. Meghabar, M. Belbachir, Asia. J. Chem. 28, 1197 (2016) doi:10.14233/ajchem.2016.19620

    Article  CAS  Google Scholar 

  29. G.J. Churchman, M. Askary, P. Peter, M. Wright, M.D. Raven, P.G. Self, Appl. Clay Sci. 20, 199 (2002). doi:10.1016/S0169-1317(01)00078-3

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to especially thank A. Addou (Laboratory of Polymer Chemistry, University of Oran1 Amed Benbella, Algeria) for FT-IR, XRD and TGA analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Souad Bennabi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bennabi, S., Belbachir, M. Synthesis and Characterization of New Organometallic Hybrid Material LCP-1 Based on MOF (Metal–Organic Framework) and Maghnite-H+, a Protons Exchanged Montmorillonite Clay, as Catalytic Support. J Inorg Organomet Polym 27, 1787–1799 (2017). https://doi.org/10.1007/s10904-017-0643-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-017-0643-4

Keywords

Navigation