Advertisement

Pincer Type Ditertiary Aminomethylphosphine–Pd(II) Complexes Supported on Multi-Walled Carbon Nanotube: Catalytic Properties in Heck C–C Coupling Reactions

  • Serhan Uruş
  • Hamza Adıgüzel
  • Mustafa Keleş
  • İbrahim Karteri
Article
  • 186 Downloads

Abstract

Pincer type aminomethylphosphine–Pd(II) complexes supported on multi-walled carbon nanotube (MWCNT) have been synthesized and characterized using X-Ray diffraction spectrometry, scanning electron microscopy, thermal analysis, energy dispersive X-Ray, Fourier transform infrared spectrometry, transmission electron microscopy (TEM) and ultraviolet–visible spectrometry techniques. The novel complexes were tried as catalysts in Heck C–C coupling reactions. The crystallite size and lattice strain of the MWCNT based compounds were calculated by the Scherrer’s equation. The optical parameters of the MWCNT based structures were analyzed and the band gap enhanced from 4.42 to 4.98 eV. Different solvents (toluene, 1,4-diooxane, DMF and NMP) and bases (Et3N, Na2CO3, NaOAc and K2CO3) were tried at different temperatures (80, 100 and 110 °C) in the cross-coupling of bromobenzene with styrene. The optimum yield was found in the presence of K2CO3, 110 °C in 1,4-dioxane solvent system.

Keywords

Phosphine Carbon nanotube Catalyst Heck coupling Optical property 

Notes

Acknowledgements

We would like to thank The Scientific & Technological Research Council of Turkey (TÜBİTAK) (Project No.: 111T211) and Kahramanmaraş Sütçü İmam University (Project No.: 2013/6-33M) for their financial supports.

References

  1. 1.
    P.E. Garrau, Chem. Rev. 81, 229–266 (1981)CrossRefGoogle Scholar
  2. 2.
    J. Fawcett, R.D.W. Kemmit, D.R. Russel, O. Serindağ, J. Organomet. Chem. 486, 171–176 (1995)CrossRefGoogle Scholar
  3. 3.
    O. Serindağ, R.D.W. Kemmit, J. Fawcett, D.R. Russel, Trans. Met. Chem. 20, 548–551 (1995)CrossRefGoogle Scholar
  4. 4.
    O. Serindağ, Synth. React. Inorg. Met-Org. 27, 69–76 (1997)CrossRefGoogle Scholar
  5. 5.
    O. Serindağ, R.D.W. Kemmit, J. Fawcett, D.R. Russel, Trans. Met. Chem. 24, 486–491 (1999)CrossRefGoogle Scholar
  6. 6.
    B.P. Esposito, R. Najjar, Coord. Chem. Rev. 232, 137–149 (2002)CrossRefGoogle Scholar
  7. 7.
    R.F. Heck, Palladium Reagents in Organic Synthesis. (Academic Press, London, 1985)Google Scholar
  8. 8.
    A.R. Hajipour, F. Rafiee, J. Organometal. Chem. 696, 2669–2675 (2011)CrossRefGoogle Scholar
  9. 9.
    N.J. Whitcombe, K.K. Hii, S.E. Gibson, Tetrahedron 57, 7449–7476 (2001)CrossRefGoogle Scholar
  10. 10.
    A. Steven, L.E. Overman, Angew. Chem. Int. Ed. 46, 5488–5508 (2007)CrossRefGoogle Scholar
  11. 11.
    N. Shahnaz, B. Banik, P. Das, Tetrahedron Lett. 54, 2886–2889 (2013)CrossRefGoogle Scholar
  12. 12.
    C. Torborg, M. Beller, Adv. Synth. Catal. 351, 3027–3043 (2009)CrossRefGoogle Scholar
  13. 13.
    X.L. Han, G.X. Liu, X.Y. Lu, Chin. J. Org. Chem 25, 1182–1197 (2005)Google Scholar
  14. 14.
    U. Christmann, R. Vilar, Angew. Chem. Int. Ed. 44, 366–374 (2005)CrossRefGoogle Scholar
  15. 15.
    A.M. Trzeciak, J.J. Ziółkowski, Coord. Chem. Rev. 249, 2308–2322 (2005)CrossRefGoogle Scholar
  16. 16.
    S. Uruş, O. Serindağ, M. Diğrak, Heteroat. Chem. 16, 484–491 (2005)CrossRefGoogle Scholar
  17. 17.
    J. Fawcett, P.A.T. Hoye, R.D.W. Kemmitt, D.J. Law, D.R. Russel, J. Chem. Soc. Dalton Trans. 17, 2563–2568 (1993)CrossRefGoogle Scholar
  18. 18.
    M. Keleş, O. Altan, O. Serindag, Heteroatom. Chem. 19, 113–118 (2008)CrossRefGoogle Scholar
  19. 19.
    M. Keleş, O. Serindağ, S. Yaşar, İ. Özdemir, Phosphorus Silicon Relat. Elem. 185,165–170 (2009)Google Scholar
  20. 20.
    S. Uruş, M. Keleş, O. Serindağ, J. Inorg. Organomet. Polym. 20, 152–160 (2010)CrossRefGoogle Scholar
  21. 21.
    S. Uruş, M. Keleş, O. Serindağ, Synth. React. Inorg. Metal-Org. Nano-Metal Chem. 40, 613–620 (2010)Google Scholar
  22. 22.
    Y. Zhang, H.B. Zhang, G.D. Lin, P. Chen, Y.Z. Yuan, K.R. Tsai, Appl. Catal. A. Gen. 187(2), 213–224 (1999)CrossRefGoogle Scholar
  23. 23.
    L. Maier, Helv. Chim. Acta 48, 133–142 (1965)CrossRefGoogle Scholar
  24. 24.
    I.D. Kostas, B.R. Steele, A. Terzis, S.V. Amosova, Tetrahedron 59, 3467–3473 (2003)CrossRefGoogle Scholar
  25. 25.
    A.B. Dongil, L. Pastor-Pérez, J.L.G. Fierro, N. Escalona, A. Sepúlveda-Escribano, Catal. Commun. 75, 55–59 (2016)CrossRefGoogle Scholar
  26. 26.
    M. Navidi, B. Movassagh, S. Rayati, Appl. Catal. A 452, 24–28 (2013)CrossRefGoogle Scholar
  27. 27.
    M. Navidi, N. Rezaei, B. Movassagh, J. Organomet. Chem. 743, 63–69 (2013)CrossRefGoogle Scholar
  28. 28.
    C.E. Hamilton, A.R. Barron, Main Group Chem. 8, 275–281 (2009)CrossRefGoogle Scholar
  29. 29.
    Y. Zhang, H.B. Zhang, G.D. Lin, P. Chen, Y.Z. Yuan, K.R. Tsai, Appl. Catal. A 187, 213–224 (1999)CrossRefGoogle Scholar
  30. 30.
    B. Movassagh, F.S. Parvis, M. Navidi, Appl. Organometal. Chem. 29, 40–44 (2015)CrossRefGoogle Scholar
  31. 31.
    M. Bazarganipour, M. Salavati-Niasari, Chem. Eng. J. 286, 259–265 (2016)CrossRefGoogle Scholar
  32. 32.
    J. Hu, H. Liu, L. Wang, N. Li, T. Xu, W. Lu, Z. Zhu, W. Chen, Carbon 100, 408–416 (2016)CrossRefGoogle Scholar
  33. 33.
    M.A. Takassi, A. Zadehnazari, Fuller. Nanotub. Carbon Nanostruct. 24, 128–138 (2016)CrossRefGoogle Scholar
  34. 34.
    V.I. Sokolov, E.G. Rakov, N.A. Bumagin, M.G. Vinogradov, Fuller. Nanotub. Carbon Nanostruct. 18, 558–563 (2010)CrossRefGoogle Scholar
  35. 35.
    T.A. Saleh, Appl. Surf. Sci. 257, 7746–7751 (2011)CrossRefGoogle Scholar
  36. 36.
    S. Uruş, M. Çaylar, M. Keleş, İ. Karteri, Fuller. Nanotub. Carbon Nanostruct. 25, 133–141 (2017)CrossRefGoogle Scholar
  37. 37.
    M. Caglar, S. Ilican, Y. Caglar, Thin Solid Films 517, 5023–5028 (2009)CrossRefGoogle Scholar
  38. 38.
    W. Water, S.-Y. Chu, Y.-D. Juang, S.-J. Wu, Mater. Lett. 57, 998–1003 (2002)CrossRefGoogle Scholar
  39. 39.
    İ. Karteri, Ş. Karatas, M. Çavas, B. Arif, F. Yakuphanoğlu, J. Nanoelectron. Optoelectron. 11, 29–35 (2016)CrossRefGoogle Scholar
  40. 40.
    K.R. Murali, A. Kalaivanan, S. Perumal, N. Neelakanda, J. Alloys Compd. 503, 350–353 (2010)CrossRefGoogle Scholar
  41. 41.
    V.R. Shinde, T.P. Gujar, C.D. Lokhande, R.S. Mane, S.H. Han, Mater. Chem. Phys. 96, 326–330 (2006)CrossRefGoogle Scholar
  42. 42.
    G.M. Neelgund, A. Oki, Appl. Catal. A 399, 154–160 (2011)CrossRefGoogle Scholar
  43. 43.
    M.R. Nabid, Y. Bide, S.J.T. Rezaei, Appl. Catal. A 399, 124–132 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Serhan Uruş
    • 1
    • 2
  • Hamza Adıgüzel
    • 1
  • Mustafa Keleş
    • 3
  • İbrahim Karteri
    • 2
    • 4
  1. 1.Chemistry Department, Faculty of Science and LettersKahramanmaraş Sütçü İmam UniversityKahramanmaraşTurkey
  2. 2.Research and Development Centre for University-Industry-Public Relations (ÜSKİM)Kahramanmaraş Sütçü İmam UniversityKahramanmaraşTurkey
  3. 3.Chemistry Department, Faculty of Science and LettersOsmaniye Korkut Ata UniversityOsmaniyeTurkey
  4. 4.Department of Energy Systems Engineering, Elbistan Faculty of TechnologyKahramanmaraş Sütçü İmam UniversityKahramanmaraşTurkey

Personalised recommendations