Skip to main content
Log in

Oxidative Degradation of Bisphenol A Using Recyclable Nanomaterials

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Two types of nanomaterials with promising potential for bisphenol A (BPA) degradation have been synthesized using two simple methods. In the first method (mode 1; M1-MnOX), KMnO4 solution was added to pre-synthesized magnetic iron oxide nanoparticles (MC) under ultrasonic mixing and subsequently, MnSO4 solution was added dropwise to the suspension. In the second method (mode 2; M2-MnOX), the mode of reagent addition was reversed; MnSO4 solution was added to MC under continuous sonication prior to the dropwise addition of KMnO4 solution to the suspension. The nanomaterials were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). The application of the nanomaterials as reusable magnetic materials for BPA degradation in water was investigated. The M1-MnOX and M2-MnOX, nanomaterials with sizes in the range 10–18 nm, were composed of iron oxide core and amorphous manganese oxide shell. Interestingly, the maximum amount of BPA degraded by M1-MnOX within 48 h was ~1 mg BPA/g wet nanoparticles, which was significantly higher than the amount degraded by M2-MnOX nanoparticles (~0.16 mg BPA/g wet nanoparticles). Furthermore, the M1-MnOX nanoparticles could be efficiently reused four successive times without major loss of degradation activity. These low cost nanomaterials could be easily recovered by magnetic separation and washed for reuse, overcoming both filtration and reuse problems often associated with conventional use of colloidal manganese oxides as sorbents or catalysts.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R. Craciun, B. Nentwick, K. Hadjiivanov, H. Knozinger, Appl. Catal. A 243, 67 (2003)

    Article  CAS  Google Scholar 

  2. C. Kappenstein, T. Wahdan, D. Duprez, M.I. Zaki, D. Brands, E. Poels, A. Blick, Preparation of Catalysts VI (Elsevier, Amsterdam, 1995), pp. 699–706

    Google Scholar 

  3. F. Wang, H. Dai, J. Deng, G. Bai, K. Ji, Y. Liu, Environ. Sci. Technol. 46, 4034 (2012)

    Article  CAS  Google Scholar 

  4. R. Huang, Z. Fang, X. Yan, W. Cheng, Chem. Eng. J. 197, 242 (2012)

    Article  CAS  Google Scholar 

  5. S.C. Kim, W.G. Shim, J. Appl. Catal. B 98, 180 (2010)

    Article  CAS  Google Scholar 

  6. N. Gao, J. Hong, Z. Yu, P. Peng, W. Huang, Soil Sci. 176, 265 (2011)

    Article  CAS  Google Scholar 

  7. K. Lin, W. Liu, J. Gan, Environ. Sci. Technol. 43, 3860 (2009)

    Article  CAS  Google Scholar 

  8. K.F. Rubert, J.A. Pedersen, Environ. Sci. Technol. 40, 7216 (2006)

    Article  CAS  Google Scholar 

  9. L. Xu, C. Xu, M. Zhao, Y. Qiu, G.D. Sheng, Water Res. 42, 5038 (2008)

    Article  CAS  Google Scholar 

  10. F. Arena, T. Torre, C. Raimondo, A. Parmaliana, Phys. Chem. Chem. Phys. 3, 1911 (2001)

    Article  CAS  Google Scholar 

  11. H. Einaga, Y. Teraoka, A. Ogat, Catal. Today 164, 571 (2011)

    Article  CAS  Google Scholar 

  12. B. Zhao, R. Ran, X. Wu, D. Weng, X. Wu, C. Huang, Catal. Commun. 56, 36 (2014)

    Article  CAS  Google Scholar 

  13. K. Lin, Y. Peng, X. Huang, J. Ding, Environ. Sci. Pollut. Res. 20, 1461 (2013)

    Article  CAS  Google Scholar 

  14. A. Dhakshinamoorthy, S. Navalon, M. Alvaro, H. Garcia, ChemSusChem 5, 46 (2012)

    Article  CAS  Google Scholar 

  15. M.B. Gawande, P.S. Branco, R.S. Varma, Chem. Soc. Rev. 42, 3371 (2013)

    Article  CAS  Google Scholar 

  16. V. Polshettiwar, R. Luque, A. Fihri, H. Zhu, M. Bouhrara, J.M. Basset, Chem. Rev. 111, 3036 (2011)

    Article  CAS  Google Scholar 

  17. D. Ramimoghadametal, S. Bagheri, S.B.A. Hamid, J. Magn. Magn. Mater. 368, 207 (2014)

    Article  Google Scholar 

  18. B. Liu, Z. Zhang, K. Lv, K. Deng, H. Duan, Appl. Catal. A 472, 64 (2014)

    Article  CAS  Google Scholar 

  19. C.L. Warner, W. Chouyyok, K.E. Mackie, D. Neiner, L.V. Saraf, T.C. Droubay, M.G. Warner, R.S. Addleman, Langmuir 28, 3931 (2012)

    Article  CAS  Google Scholar 

  20. A. Omoike, in Nanoparticles: Synthesis, Stabilization, Passivation and Functionalization, ed. By R. Nagarajan and T.A. Hatton, (Oxford University Press, London, 2008) p. 90

    Chapter  Google Scholar 

  21. R.M. Cornell, U. Schwertmann, in The Iron Oxides: Structure, Properties, Reactions, Occurrence, and Uses, (Wiley-VCH, New York, 2003) pp. 53–85

    Book  Google Scholar 

  22. J. Lai, K.V.P.M. Shafi, A. Ulman, K. Loos, N.-L. Yang, M.-H. Cui, T. Vogt, C. Estournes, D.C. Locke, J. Phys. Chem. B 108, 14876 (2004)

    Article  CAS  Google Scholar 

  23. S.J. Salazar, L. Perez, O. de Abril, L.T. Phuoc, D. Ihiawakrim, M. Vazquez, J.-M. Greneche, S. Begin-Colin, G. Pourroy, Chem. Mater. 23, 1379 (2011)

    Article  Google Scholar 

  24. R. Liu, H. Liu, Z. Qiang, J. Qu, G. Li, D. Wang, J. Colloid Interface Sci. 331, 275 (2009)

    Article  CAS  Google Scholar 

  25. Z. Zhang, J. Kong, J. Hazard. Mater. 193, 325 (2011)

    Article  CAS  Google Scholar 

  26. H. Carvalho, P. Hammer, S. Pulcinelli, C. Santilli, E. Molina, Mater. Sci. Eng. B 181, 64 (2014)

    Article  CAS  Google Scholar 

  27. V. C. Bose, V. Biju, Bull. Mater. Sci. 38, 865 (2015)

    Article  CAS  Google Scholar 

  28. Y. Huang, J. Tang, L. Gai, Y. Gong, H. Guan, R. He, H. Lyu, Chem. Eng. J. 319, 229 (2017)

    Article  CAS  Google Scholar 

  29. D. Banerjee, H.W. Nesbitt, Geochim. Cosmochim. Acta 63, 1671 (1999)

    Article  CAS  Google Scholar 

  30. G.-S. Zhang, J.-H. Qu, H.-J. Liu, R.-P. Liu, G.-T. Li, Environ. Sci. Technol. 41, 4613 (2007)

    Article  CAS  Google Scholar 

  31. L. Jiang, S. Xiao, J. Chen, Colloid Surf. A 479, 1 (2015)

    Article  CAS  Google Scholar 

  32. A.S. Madden, M.F. Hochella Jr., Geochim. Cosmochim. Acta 69, 389 (2005)

    Article  CAS  Google Scholar 

  33. H. Veeramani, D. Aruguete, N. Monsegue, M. Murayama, U. Dippon, A. Kappler, M.F. Hochella, ACS Sustainable Chem. Eng. 1, 1070 (2013)

    Article  CAS  Google Scholar 

  34. Y.H. Chen, J. Alloys Compd. 553, 194 (2013)

    Article  CAS  Google Scholar 

  35. S. Anjum, R. Tufail, K. Rashid, R. Zia, S. Riaz, J. Magn. Magn. Mater. 432, 198 (2017)

    Article  CAS  Google Scholar 

  36. T. Belin, N. Millot, N. Bovet, M.J. Gailhanou, J. Solid State Chem. 180, 2377 (2007)

    Article  CAS  Google Scholar 

  37. J. Li, R. Wang, J.J. Hao, Phys. Chem. C 114, 10544 (2010)

    Article  CAS  Google Scholar 

  38. B. Liu, P.S. Thomas, A.S. Ray, R.P. Williams, J. Therm. Anal. Calorim 76, 115 (2004)

    Article  CAS  Google Scholar 

  39. M.I. Zaki, M.A. Hasan, L. Pasupulety, K. Kumari, Thermochim. Acta 303, 171 (1997)

    Article  CAS  Google Scholar 

  40. K. Akhtar, M. Gul, I.U. Haq, R.A. Khan, Z.U. Khan, A. Hussain, Ceram. Int. 42, 18064 (2016)

    Article  CAS  Google Scholar 

  41. M. Neamtu, N.H. Frimmel, Water Res. 40, 3745 (2006)

    Article  CAS  Google Scholar 

  42. A. Belfroid, M. van Velzen, B. van der Horst, D. Vethaak, Chemosphere 49, 97 (2002)

    Article  CAS  Google Scholar 

  43. L.N. Vandenberg, R. Hauser, M. Marcus, N. Olea, W.V. Welshons, Reprod. Toxicol. 24, 139 (2007)

    Article  CAS  Google Scholar 

  44. A. Wollner, F. Lange, H. Schmetz, H. Knozinger, Appl. Catal. 94, 181 (1993)

    Article  Google Scholar 

  45. A.T. Stone, J.J. Morgan, Environ. Sci. Technol. 18, 617 (1984)

    Article  CAS  Google Scholar 

  46. H.C. Zhang, C.H. Huang, Environ. Sci. Technol. 39, 593 (2005)

    Article  CAS  Google Scholar 

  47. J. Im, C.W. Prevatte, S.R. Campagna, F.E. Loffler, Environ. Sci. Technol. 49, 6214 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Research Initiative for Summer Engagement (RISE) Award, USC Office of the Vice President for Research and partial support by USC Upstate Office of Sponsored Awards and Research Support. The authors thank Professor Hanno zur Loye (University of South Carolina, Columbia SC), Dr. Haijun Quian (Clemson University Electron Microscopy Laboratory, Clemson SC), Mr. Paul Lee (The University of Arizona, Tucson AZ) for their assistance with PXRD, TEM/HRTEM, and XPS analysis, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anselm I. Omoike.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omoike, A.I., Hall, K.N. Oxidative Degradation of Bisphenol A Using Recyclable Nanomaterials. J Inorg Organomet Polym 28, 535–547 (2018). https://doi.org/10.1007/s10904-017-0627-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-017-0627-4

Keywords

Navigation