Isomer Directed Synthesis of Two 3D Cadmium(II) Compounds: Structure Variation and Energetic Performance

  • Bo Wei
  • Duo Xu
  • Zhan Yong Yang
  • Fan Sun
  • Xiao Qing Gu
  • Chang Yu Sun
  • Fang Yu Guo
  • Qiao Yun Li
  • Gao Wen Yang


Bifunctional tetrazole-carboxylates, 5-(n-pyridyl)tetrazole-2-isopropionic acid (denoted as Hn-pytzipa, n = 2, 3) have been selected to be reacted with CdCl2·2.5 H2O under solvothermal conditions, [Cd3(2-pytzipa)2(MeOH)2Cl4]n (1) and [Cd(3-pytzipa)2]n (2) were obtained. In compound 1, 2-pytzipa is a pentadentate ligand to bridge adjacent Cd(II) centers to generate a fascinating 3D dinodal 4-connected, 5-connected net with point symbol of (42·84)(43·64·73). In 2, each 3-pytzipa bridges three Cd(II) atoms in a μ 1,3-COO syn-anti mode to generate a fascinating 3D one-nodal 6-connected net with point symbol of (42·52·66·75). Photoluminescence properties of compounds 1 and 2 in the solid state show enhanced ligand centered emission. Furthermore, thermogravimetric-differential (TG-DTG) and differential scanning calorimetry (DSC) were used to evaluate the thermal decomposition behavior of compounds 1 and 2, showing that the decomposition process of compound 2 is much more intense than that of compound 1. The thermal parameters (∆S, ∆H and ∆G) of the decomposition of compound 2 were calculated, as well.


Cd(II), isomer Crystal structure Luminescence Energetic performance 



We appreciate financial support from the Natural Science Foundation of Jiangsu Province (Grant No. BK2012210), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 10KJB430001) and the Opening Fund of Jiangsu Key Laboratory of Advanced Functional Materials (Grant No. 12KFJJ010). We greatly thank Meng Yue Guo and Peng Peng Sun for their help.

Supplementary material

10904_2017_623_MOESM1_ESM.pdf (609 kb)
Supplementary material 1 (PDF 609 KB)
10904_2017_623_MOESM2_ESM.doc (12 kb)
Supplementary material 2 (DOC 12 KB)


  1. 1.
    S. Zhang, Q. Yang, X.Y. Liu, X.N. Qu, Q. Wei, G. Xie, S.P. Chen, S.L. Gao, Coord. Chem. Rev. 307, 292–312 (2016)CrossRefGoogle Scholar
  2. 2.
    H. Xue, H.X. Gao, B. Twamley, J.M. Shreeve, Chem. Mater. 19, 1731–1739 (2007)CrossRefGoogle Scholar
  3. 3.
    D. Srinivas, V.D. Ghule, K. Muralidharan, H.D.B. Jenki, Chem. Asian J. 8, 1023–1028 (2013)CrossRefGoogle Scholar
  4. 4.
    C.H. Yang, Y.M. Lu, M.Q. Yan, J. Li, J. Wu, Q.Y. Li, J. Yang, L. Shen, G.W. Yang, J.H. Zou, Chem. Selet. 1, 2757–2761 (2016)Google Scholar
  5. 5.
    A. Karmakar, G.M.D.M. Rubio, M.F.C. GuedesdaSilva, S. Hazra, A.J.L. Pombeiro, Cryst. Growth Des. 15, 4185–4197 (2015)CrossRefGoogle Scholar
  6. 6.
    M. Wriedt, A.A. Yakovenko, G.J. Halder, A.V. Prosvirin, K.R. MDunbar, H.C. Zhou, J. Am. Chem. Soc. 135, 4040–4050 (2013)CrossRefGoogle Scholar
  7. 7.
    M. Wriedt, J.P. Sculley, A.A. Yakovenko, Y.G. Ma, G.J. Halder, P.B. Balbuena, H.C. Zhou, Angew. Chem. Int. Ed. 51, 9804–9808 (2012)CrossRefGoogle Scholar
  8. 8.
    L. Shen, M.J. Cao, F.F. Zhang, Q. Wu, L.Y. Zhao, Y.M. Lu, Q.Y. Li, G.W. Yang, B. Wei, J.H. Zou, Trans. Met Chem. 41, 125–131 (2016)CrossRefGoogle Scholar
  9. 9.
    J. Chen, S.H. Wang, Z.F. Liu, M.F. Wu, Y. Xiao, F.K. Zheng, G.C. Guo, J.S. Huang, New J. Chem. 38 269–276 (2014)CrossRefGoogle Scholar
  10. 10.
    J.H. Zou, D.L. Zhu, Q. Liu, S. Li, G.D. Mei, J.N. Zhu, Q.Y. Li, G.W. Yang, Y.X. Miao, F.F. Li, Inorg. Chim. Acta 421, 451–458 (2014)CrossRefGoogle Scholar
  11. 11.
    R. Sarma, D. Kalita, J.B. Baruah, Dalton Trans. 7428, 7428–7433 (2009)CrossRefGoogle Scholar
  12. 12.
    J.H. Zou, D.L. Zhu, F.F. Li, F.S. Li, H. Wu, Q.Y. Li, G.W. Yang, P. Zhang, Y.X. Miao, J. Xie, Z Anorg. Allg. Chem. 640, 2226–2231 (2014)CrossRefGoogle Scholar
  13. 13.
    J. Yang, L. Shen, G.W. Yang, Q.Y. Li, W. Shen, J.N. Jin, J.J. Zhao, J.J. Dai, J. Solid State Chem. 186, 124–129 (2012)CrossRefGoogle Scholar
  14. 14.
    J.H. Zou, Q. Liu, J.F. Dong, M.J. Cao, Q. Wu, Q.Y. Yue, Q.Y. Li, G.W. Yang, Aust. J. Chem. 68, 1152–1159 (2015)CrossRefGoogle Scholar
  15. 15.
    Y.M. Lu, J. Wang, J. Wu, K.K. Ding, Y.K. Li, L.L. Miao, Q.Y. Li, G.W. Yang, Inorg. Chim. Acta 450, 395–401 (2016)CrossRefGoogle Scholar
  16. 16.
    Q. Wu, M.J. Cao, B. Wei, Y. Bai, H. Tian, J. Wang, Q. Liu, Q.Y. Li, G.W. Yang, Inorg. Chem. Commun. 62, 111–114 (2015)CrossRefGoogle Scholar
  17. 17.
    L.L. Miao, M.Y. Guo, J. Wu, Y.M. Lu, Q. Wu, Y. Bai, Q.Y. Li, G.W. Yang, Inorg. Chim. Acta 450, 176–181 (2016)CrossRefGoogle Scholar
  18. 18.
    J.C. Dai, X.T. Wu, Z.Y. Fu, S.M. Hu, W.X. Du, C.P. Cui, L.M. Wu, H.H. Zhang, R.Q. Sun, Chem. Commun. 12, 12–13 (2002)CrossRefGoogle Scholar
  19. 19.
    Y.L. Kou, S.C. Qu, K. Liu, D. Chi, S.D. Lu, Y.P. Li, S.Z. Yue, Acta Phys. Chim. Sin. 31, 807–816 (2015)Google Scholar
  20. 20.
    J. Yang, L. Shen, G.W. Yang, Q.Y. Li, W. Shen, J.N. Jin, J.J. Zhao, J.J. Dai, Solid State Chem. 186, 124 (2012)CrossRefGoogle Scholar
  21. 21.
    G.W. Yang, F.F. Zhang, Q. Wu, M.J. Cao, Y. Bai, Q.Y. Li, B. Wei, J.H. Zou, RSC Adv. 5, 84439–84445 (2015)CrossRefGoogle Scholar
  22. 22.
    P.P. Sun, J.F. Dong, Y. Wang, Y.J. Liu, F. Sun, J.W. Yuan, G.W. Yang, Q.Y. Li, Inorg. Chem. Commun. 73, 77–79 (2016)CrossRefGoogle Scholar
  23. 23.
    L. Shen, Y. Bai, Y.T. Min, T.T. Jia, Q. Wu, J. Wang, F. Geng, H.J. Cheng, D.R. Zhu, J. Yang, G.W. Yang, J. Solid. State Chem. 244, 129–139 (2016)CrossRefGoogle Scholar
  24. 24.
    Rigaku CrystalClear. Rigaku Corporation, Tokyo, Japan, (2005)Google Scholar
  25. 25.
    G.M. Sheldrick, ActaCrystallogr. Sect. A 64, 112 (2008)Google Scholar
  26. 26.
    Q.Y. Li, M.H. He, J.N. Jin, W. Shen, J. Yang, G.W. Yang, L.L. Zhu, J. Dai 31, 1047–1055 (2012)Google Scholar
  27. 27.
    J. Yang, L. Shen, G.W. Yang, Q.Y. Li, L.L. Zhu, W. Shen, C. Ji, X.F. Shen, Inorg. Chim. Acta 392, 25–29 (2012)CrossRefGoogle Scholar
  28. 28.
    W.X. Li, H. J, Zou, B.B. Wang, S. Li, G.W. Yang, Q.Y. Li, B. Qiu, D.L. Zhu, Transit. Met. Chem. 39, 421–429 (2014)CrossRefGoogle Scholar
  29. 29.
    H.E. Kissinger, Anal. Chem. 19, 1702–1706 (1957)CrossRefGoogle Scholar
  30. 30.
    T. Ozawa, Bull. Chem. Soc. Jpn. 38, 1881–1886 (1965)CrossRefGoogle Scholar
  31. 31.
    T.L. Zhang, R.Z. Hu, Y. Xue, F.P. Li, Thermochim. Acta 244, 171–175 (1994)CrossRefGoogle Scholar
  32. 32.
    R.Z. Hu, S.P. Chen, S.L. Gao, F.Q. Zhao, Y. Luo, H.X. Gao, Q.Z. Shi, H.A. Zhao, P. Yao, J. Li, J. Hazard. Mater. 117, 103–110 (2005)CrossRefGoogle Scholar
  33. 33.
    J.H. Yi, F.Q. Zhao, B.Z. Wang, Q. Liu, C. Zhou, R.Z. Hu, Y.H. Ren, S.Y. Xu, K.Z. Xu, X.N. Ren, J. Hazard. Mater. 181, 432–439 (2010)CrossRefGoogle Scholar
  34. 34.
    D.L. Zhu, Q.Y. Yue, J. Wang, M.Y. Guo, L.L. Miao, L.J. Qiu, Q.Y. Li, G.W. Yang, J. Inorg. Organomet. Polym. 26, 616–622 (2016)CrossRefGoogle Scholar
  35. 35.
    Z.M. Li, T.L. Zhang, G.T. Zhang, Z.N. Zhou, L. Yang, J.G. Zhang, K.B. Yu, J. Coord. Chem. 66, 1276–1286 (2013)CrossRefGoogle Scholar
  36. 36.
    H.S. Huang, Z.M. Li, G.T. Zhang, T.L. Zhang, S.T. Zhang, L. Yang, J.G. Zhang, Z.N. Zhou, Main Group Chem. 12, 197–208 (2013)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Bo Wei
    • 1
  • Duo Xu
    • 1
  • Zhan Yong Yang
    • 1
  • Fan Sun
    • 1
  • Xiao Qing Gu
    • 1
  • Chang Yu Sun
    • 1
  • Fang Yu Guo
    • 1
  • Qiao Yun Li
    • 1
  • Gao Wen Yang
    • 1
  1. 1.Jiangsu Laboratory of Advanced Functional Material, Department of Chemistry and Material EngineeringChangshu Institute of TechnologyChangshuPeople’s Republic of China

Personalised recommendations