Synthesis, Characterization and Luminescent Properties of Copper(I) Halide Complexes Containing 1-(Diphenylphosphino)naphthalene

  • Qian Li
  • Li Liu
  • Xin-Xin Zhong
  • Fa-Bao Li
  • Abdullah M. Asiri
  • Khalid A. Alamry
  • Nian-Yong Zhu
  • Wai-Yeung Wong
  • Hai-Mei Qin


A series of neutral luminescent tetranuclear and mononuclear copper(I) halide complexes, [Cu4I4(dpna)4] (1) and [CuX(dpna)2] dpna = 1-(diphenylphosphino)naphthalene, X = Br (2), Cl (3), were synthesized, and their molecular structures and photophysical properties were investigated. Complex 1 has a cubane-like structure with four Cu atoms pseudo-tetrahedral and four I atoms serving as μ3-bridges. The coordination geometry of the copper centers in 2–3 are trigonal-planar. In the solid state, complexes 1–3 display blue photoluminescence (λmax = 423–463 nm) at 298 K. The emission of the complexes originate from the (σ+X)→π* transition. All three complexes displayed good thermal stability.

Graphical Abstract


Neutral Cu(I) complexes Halide Synthesis Luminescence 



This work was supported by the National Natural Science Foundation of China [Grant Number 21671061]; Natural Science Foundation of Hubei Province of China [Grant Number 2013CFA087]; Hubei Province High-End Talent Training Program and the Natural Science Fund for Creative Research Groups of Hubei Province of China [Grant Number 2014CFA015]. W.-Y.W. acknowledges the financial support from the Areas of Excellence Scheme, University Grants Committee of HKSAR, China (AoE/P-03/08) and the Hong Kong Polytechnic University (1-ZE1C).

Supplementary material

10904_2017_601_MOESM1_ESM.doc (6.7 mb)
Supplementary material 1 (DOC 6893 KB)
10904_2017_601_MOESM2_ESM.pdf (213 kb)
Supplementary material 2 (PDF 213 KB)
10904_2017_601_MOESM3_ESM.pdf (158 kb)
Supplementary material 3 (PDF 157 KB)
10904_2017_601_MOESM4_ESM.pdf (159 kb)
Supplementary material 4 (PDF 158 KB)


  1. 1.
    H. Yersin (ed.), Highly Efficient OLEDs with Phosphorescent Materials. (Wiley-VCH, Weinheim, 2008)Google Scholar
  2. 2.
    M.A. Baldo, D.F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M.E. Thompson, S.R. Forrest, Nature 395, 151 (1998)CrossRefGoogle Scholar
  3. 3.
    H. Yersin, A.F. Rausch, R. Czerwieniec, T. Hofbeck, T. Fischer, Coord. Chem. Rev. 255, 2622 (2011)CrossRefGoogle Scholar
  4. 4.
    R. Czerwieniec, K. Kowalski, H. Yersin, Dalton Trans. 42, 9826 (2013)CrossRefGoogle Scholar
  5. 5.
    M. Osawa, Chem. Commun. 50, 1801 (2014)CrossRefGoogle Scholar
  6. 6.
    V.A. Krylova, P.I. Djurovich, B.L. Conley, R. Haiges, M.T. Whited, T.J. Williams, M.E. Thompson, Chem. Commun. 50, 7176 (2014)CrossRefGoogle Scholar
  7. 7.
    Q. Zhang, Q. Zhou, Y. Cheng, L. Wang, D. Ma, X. Jing, F. Wang, Adv. Mater. 16, 432 (2004)CrossRefGoogle Scholar
  8. 8.
    N. Armaroli, G. Accorsi, F. Cardinali, A. Listorti, Top. Curr. Chem. 280, 69 (2007)CrossRefGoogle Scholar
  9. 9.
    A. Barbieri, G. Accorsi, N. Armaroli, Chem. Commun. 19, 2185 (2008)CrossRefGoogle Scholar
  10. 10.
    J. Min, Q. Zhang, W. Sun, Y. Cheng, L. Wang, Dalton Trans. 40, 686 (2011)CrossRefGoogle Scholar
  11. 11.
    Y. Tao, K. Yuan, T. Chen, P. Xu, H. Li, R. Chen, C. Zheng, L. Zhang, W. Huang, Adv. Mater. 26, 7931 (2014)CrossRefGoogle Scholar
  12. 12.
    H.V.R. Dias, H.V.K. Diyabalanage, M.A. Rawashdeh-Omary, M.A. Franzman, M.A. Omary, J. Am. Chem. Soc. 125, 12072 (2003)CrossRefGoogle Scholar
  13. 13.
    H.V.R. Dias, H.V.K. Diyabalanage, M.G. Eldabaja, O. Elbjeirami, M.A. Rawashdeh-Omary, M.A. Omary, J. Am. Chem. Soc. 127, 7489 (2005)CrossRefGoogle Scholar
  14. 14.
    S.B. Harkins, J.C. Peters, J. Am. Chem. Soc. 127, 2030 (2005)CrossRefGoogle Scholar
  15. 15.
    J.C. Deaton, S.C. Switalski, D.Y. Kondakov, R.H. Young, T.D. Pawlik, D.J. Giesen, S.B. Harkins, A.J.M. Miller, S.F. Mickenberg, J.C. Peters, J. Am. Chem. Soc. 132, 9499 (2010)CrossRefGoogle Scholar
  16. 16.
    A.J.M. Miller, J.L. Dempsey, J.C. Peters, Inorg. Chem. 46, 7244 (2007)CrossRefGoogle Scholar
  17. 17.
    M.G. Crestani, G.F. Manbeck, W.W. Brennessel, T.M. McCormick, R. Eisenberg, Inorg. Chem. 50, 7172 (2011)CrossRefGoogle Scholar
  18. 18.
    M. Hashimoto, S. Igawa, M. Yashima, I. Kawata, M. Hoshino, M. Osawa, J. Am. Chem. Soc. 133, 10348 (2011)CrossRefGoogle Scholar
  19. 19.
    M.J. Leitl, V.A. Krylova, P.I. Djurovich, M.E. Thompson, H. Yersin, J. Am. Chem. Soc. 136, 16032 (2014)CrossRefGoogle Scholar
  20. 20.
    K. Tsuge, Y. Chishina, H. Hashiguchi, Y. Sasaki, M. Kato, S. Ishizaka, N. Kitamura, Coord. Chem. Rev. 306, 636 (2016)CrossRefGoogle Scholar
  21. 21.
    L. Qi, Q. Li, X. Hong, L. Liu, X.X. Zhong, Q. Chen, F.B. Li, Q. Liu, H.M. Qin, W.Y. Wong, J. Coord. Chem. 69, 3692 (2016)CrossRefGoogle Scholar
  22. 22.
    M. Sun, H.Y. Zhang, Q. Han, K. Yang, S.D. Yang, Chem. Eur. J. 17, 9566 (2011)CrossRefGoogle Scholar
  23. 23.
    SAINT, Reference Manual, Siemens, Energy and Automation, Madison (1994)Google Scholar
  24. 24.
    G.M. Sheldrick, SADABS, Empirical Absorption Correction Program, (University of GÓ§ttingen, GÓ§ttingen, 1997)Google Scholar
  25. 25.
    G.M. Sheldrick, SHELXTL Reference Manual, Version5.1, Siemens Energy and Automation, Madison (1997)Google Scholar
  26. 26.
    M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, Revision A. 1. (GaussianInc., Wallingford, 2009)Google Scholar
  27. 27.
    L. Maini, D. Braga, P.P. Mazzeo, B. Ventura, Dalton Trans. 41, 531 (2012)CrossRefGoogle Scholar
  28. 28.
    A. Tsuboyama, K. Kuge, M. Furugori, S. Okada, M. Hoshino, K. Ueno, Inorg. Chem. 46, 1992 (2007)CrossRefGoogle Scholar
  29. 29.
    M. Osawa, M. Hoshino, M. Hashimoto, I. Kawata, S. Igawa, M. Yashima, Dalton Trans. 44, 8369 (2015)CrossRefGoogle Scholar
  30. 30.
    Z. Liu, M.F. Qayyum, C. Wu, M.T. Whited, P.I. Djurovich, K.O. Hodgson, B. Hedman, E.I. Solomon, M.E. Thompson, J. Am. Chem. Soc. 133, 3700 (2011)CrossRefGoogle Scholar
  31. 31.
    X. Hong, B. Wang, L. Liu, X.X. Zhong, F.B. Li, L. Wang, W.Y. Wong, H.M. Qin, Y.H. Lo, J. Lumin. 180, 64 (2016)CrossRefGoogle Scholar
  32. 32.
    D. Braga, F. Grepioni, L. Maini, P.P. Mazzeo, B. Ventura, New J. Chem. 35, 339 (2011)CrossRefGoogle Scholar
  33. 33.
    D. Braga, L. Maini, P.P. Mazzeo, B. Ventura, Chem. -Eur. J. 16, 1553 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, School of Chemistry and Chemical EngineeringHubei UniversityWuhanPeople’s Republic of China
  2. 2.Chemistry Department, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
  3. 3.Institute of Molecular Functional Materials and Department of Chemistry and Institute of Advanced MaterialsHong Kong Baptist UniversityHong KongPeople’s Republic of China
  4. 4.Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic UniversityHong KongPeople’s Republic of China
  5. 5.Fujian Provincial Key Lab of Theoretical and Computational Chemistry, and Department of Chemistry, College of Chemistry and Chemical EngineeringXiamen UniversityXiamenPeople’s Republic of China

Personalised recommendations