Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Wet Chemical Co-precipitation Synthesis of Nickel Ferrite Nanoparticles and Their Characterization

  • 334 Accesses

  • 4 Citations

Abstract

In this study, wet chemical co-precipitation method was employed for the synthesis of pure and doped nickel ferrite nanoparticles at low temperature whereas the concentration of nickel varies from 2, 4, 6 and 8%. Optical absorption and transmission, Surface morphology, and structural properties of material are characterized by Fourier-transform infrared spectrometer, ultra-violet visible spectroscopy, scanning electron microscopy and powder X-ray diffraction respectively. It is observed that the transmission, size and band gap energy increases by increasing the amount of nickel. Red shift of the peaks is observed in the UV–visible spectra which is associated with the increase in size of the nickel ferrite. It can be used to fabricate devices intended to store data, for the classification of inorganic materials which plays a very important role in the different aspects of life due to their outstanding magnetic, electronic and optical properties.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    M. Dariel, L.H. Bennett, D.S. Lashmore, J. Appl. Phys. 61, 4067 (1987)

  2. 2.

    W.D. Williams, N. Giordano, Phys. Rev. B 33, 8146 (1986)

  3. 3.

    T.M. Whitney, J.S. Jiang, P.C. Searson, Science 261, 1316 (1986)

  4. 4.

    L. Piraux, J.M. George, J.F. Despres, C. Leroy, Appl. Phys. Lett. 65, 2484 (1994)

  5. 5.

    J. Yang, S.B. Park, H.G. Yoon, Y.M. Huh, S. Haam, Int. J. Pharm. 324, 185–190 (2006)

  6. 6.

    F.X. Hu, K.G. Neoh, E.T. Kang, Biomaterials 27, 5725–5733 (2006)

  7. 7.

    Y.L. Luo, L.H. Fan, F. Xu, Y.S. Chen, C.H. Zhang, Q.B. Wei, Mater. Chem. Phys. 120, 590–597 (2010)

  8. 8.

    K.V.P.M. Shafi, Y. Koltypin et al., J. Phys. Chem. B 101, 6409 (1997)

  9. 9.

    M. Khaldi, A. Benyoucef, C. Quijada, A. Yahiaoui, E. Morallon, J. Inorg. Organomet. Polym. Mater. 24, 267–274 (2014)

  10. 10.

    Z. Cai, C.R. Martin, J. Am. Chem. Soc. 111, 4138 (1989)

  11. 11.

    S.K. Chakarvarti, J. Vetter, Nucl. Instrum. Methods Phys. Res. B 62, 109 (1991)

  12. 12.

    S.K. Chakarvarti, J. Vetter, J. Micromech. Microeng. 3, 57 (1993)

  13. 13.

    S. Larumbe, C.G. Polo, J.I.P. Landazábal, A.G. Prieto, J. Nanosci. Nanotechnol. 12, 1–9 (2012)

  14. 14.

    S. Benykhlef, A. Bekhoukh, R. Berenguer, E. Morallon, Colloid Polym. Sci. 294, 1877–1885 (2016)

  15. 15.

    I. Radja, H. Djelad, E. Morallon, A. Benyoucef, Synth. Met. 202, 25–32 (2015)

  16. 16.

    M. Kooti, A.N. Sedeh, J. Mater. Sci. Technol. 29, 34–38 (2013)

  17. 17.

    F.S. Tehrani, V. Daadmehr, A.T. Rezakhani, J. Supercond. Novel Magn. 25, 2443–2455 (2012)

  18. 18.

    M.H. Sousa, F. Augusta, J. Phys. Chem. 105, 1168–1175 (2001)

  19. 19.

    F. Chouli, I. Radja, E. Morallon, A. Benyoucef, Polym. Compos. (2015)

  20. 20.

    R. Galindo, E. Mazario, S. Gutiérrez, M.P. Morales, P. Herrasti, J. Alloys Compd., 536S, S241–S244, (2012)

  21. 21.

    G. Fan, Z. Yang, L. Li, J. Chem. Eng. 155, 534 (2009)

  22. 22.

    S.Y. Vilar, M.S. Andujar, C.G. Aguirrea, J. Mira, M.A.S. Rodrıguez, J. Solid State Chem. 182, 2685–2690 (2009)

  23. 23.

    R.H. Kodama, J. Magn. Magn. Mater. 200, 359 (1999)

  24. 24.

    S. Prasad, N.S. Gajbhiye, J. Alloys Compd. 265, 87 (1998)

  25. 25.

    S. Son, M. Taheri, E. Carpenter, J. Appl. Phys. 91, 7589 (2002)

  26. 26.

    F.Z. Dahou, M.A. Khaldi, A. Zehhaf, A. Benyoucef, M.I. Ferrahi, Adv. Polym. Technol. 35, 1–8 (2016)

  27. 27.

    S.K.E. Islam, P. Sharma, J. Nano Electron. Phys. 6, 1–4 (2014)

  28. 28.

    R. Asokarajan, A.M.F. Benial, K. Neyvasagam, Int. J. Nanosci. Nanotechnol. 4, 113–120 (2013)

  29. 29.

    P.H. Gomez, J.M. Munoz, M.A. Valente, C. Torres, C. de Francisco, Eur. Phys. J. Conf. 40, 170031–170034 (2013)

  30. 30.

    V.R. Cosovic, N.M. Talijan, A.R. Cosovic, J. Trends Dev. Mach. Assoc. Technol. 18, 115–118 (2014)

  31. 31.

    R. Suresh, P. Moganavally, M. Deepa, Int. J. ChemTech Res. 8, 113–116 (2015)

  32. 32.

    Z.P. Cherkezova-Zheleva, K.L. Zaharieva, V.S. Petkova, B.N. Kunev, I.G. Mitov, Bulg. Chem. Commun. 44, 24–29 (2012)

  33. 33.

    K. Maaz, S. Karim, S.K. Mumtaz, Hasanain, J. Liu, L. Duan, J. Magn. Magn. Mater. 321, 1838–1842 (2009)

  34. 34.

    A. Gatelyte, D. Jasaitis, A. Beganskiene, A. Kareiva, Mater. Sci. 17, 302–307 (2011)

  35. 35.

    S. Omprakash, A.S. Roy, P.S. Naik, Int. J. Basic Appl. Res. 1, 17–23 (2011)

  36. 36.

    K. Rafeekali, M. Maheem, E.M. Mohammed, Int. J. Eng. Sci. Innov. Technol. 4, 194–198 (2015)

  37. 37.

    E. Perez, C.G. Polo, S. Larumbe, J.I.P. Landazabal, V. Sagredo, Revista Mexicana de Fisica S, 58, 104–107 (2012)

  38. 38.

    M.P. Reddy, W. Madhuri, K. Sadhana, J. Sol-Gel. Sci. Technol. 70, 400–404 (2014)

  39. 39.

    B.P. Jacob, A. Kumar, R.P. Pant, S. Singh, E.M. Mohammed, Bull. Mater. Sci. 34, 345–1350 (2011)

  40. 40.

    K. Nejati, R. Zabihi, Chem. Cent. J. 6, 1–6 (2012)

  41. 41.

    S. Diodati, L. Pandolfo, A. Caneschi, S. Gialanella, Nano Res. 7, 1027–1042 (2014)

  42. 42.

    N. Kasapoglu, A. Baykal, M.S. Toprak, Y. Koseoglu, H. Bayrakdar, Turk. J. Chem. 31, 659–666 (2007)

  43. 43.

    F. Chouli, A. Zehhaf, A. Benyoucef, Macromol. Res. 22, 26–31 (2014)

  44. 44.

    Z.H. Zhou, J.M. Xue, J. Wang, J. Appl. Phys. 91, 6015–6020 (2002)

  45. 45.

    R. Gopal, S.C. Singh, R.K. Swarnkar, Nano Sci. Technol. Inst. 1, 166–169 (2009)

  46. 46.

    H. Kavas, N. Kasapoglu, A. Baykal, Y. Koseoglu, Chem. Pap. 63, 450–455, (2009)

  47. 47.

    H.R. Ghorbani, A.A. Safekordi, H. Attar, S.M. Rezayat Sorkhabadi, Chem. Biochem. Eng. Q. 25, 317–326 (2011)

  48. 48.

    A.B. Seabra, N. Durán, Metals 5, 934–975 (2015)

  49. 49.

    P.S. Foner, Rev. Sci. Instrum. 30, 548–557 (1959)

  50. 50.

    C. Suryanarayana, M.G. Norton, X-Ray Diffraction: A Practical Approach, 1st edn. (Springer Science + Business Media, New York, 1998)

  51. 51.

    A.R. West, Basic Solid State Chemistry, 2nd edn. (Wiley, New York, 1987)

  52. 52.

    A. Dey, A.K. Mukhopadhyay, S. Gangadharan, M.K. Sinha, J. Therm. Spray Technol. 18, 578 (2009)

  53. 53.

    J. Singh, M. Srivastava, A. Roychoudhury, D.W. Lee, S.H. Lee, B.D. Malhotra, J. Phys. Chem. B 117, 141 (2013)

  54. 54.

    S. Kumar, P. Sharma, V. Sharma, J. Appl. Phys. 111, 113510 (2012)

  55. 55.

    R. Asokarajan, Int. J. Nanosci. Nanotechnol. 4, 113–120 (2013)

  56. 56.

    R. Das, M.E. Ali, S.B.A. Hamid, Rev. Adv. Mater. Sci. 38, 95–109 (2014)

Download references

Author information

Correspondence to M. B. Tahir.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tahir, M.B., Iqbal, T., Hassan, A. et al. Wet Chemical Co-precipitation Synthesis of Nickel Ferrite Nanoparticles and Their Characterization. J Inorg Organomet Polym 27, 1430–1438 (2017). https://doi.org/10.1007/s10904-017-0598-5

Download citation

Keywords

  • Nanoparticles
  • Concentration
  • Nickel
  • Inorganic materials