Skip to main content
Log in

Wet Chemical Co-precipitation Synthesis of Nickel Ferrite Nanoparticles and Their Characterization

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In this study, wet chemical co-precipitation method was employed for the synthesis of pure and doped nickel ferrite nanoparticles at low temperature whereas the concentration of nickel varies from 2, 4, 6 and 8%. Optical absorption and transmission, Surface morphology, and structural properties of material are characterized by Fourier-transform infrared spectrometer, ultra-violet visible spectroscopy, scanning electron microscopy and powder X-ray diffraction respectively. It is observed that the transmission, size and band gap energy increases by increasing the amount of nickel. Red shift of the peaks is observed in the UV–visible spectra which is associated with the increase in size of the nickel ferrite. It can be used to fabricate devices intended to store data, for the classification of inorganic materials which plays a very important role in the different aspects of life due to their outstanding magnetic, electronic and optical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Dariel, L.H. Bennett, D.S. Lashmore, J. Appl. Phys. 61, 4067 (1987)

    Article  CAS  Google Scholar 

  2. W.D. Williams, N. Giordano, Phys. Rev. B 33, 8146 (1986)

    Article  CAS  Google Scholar 

  3. T.M. Whitney, J.S. Jiang, P.C. Searson, Science 261, 1316 (1986)

    Article  Google Scholar 

  4. L. Piraux, J.M. George, J.F. Despres, C. Leroy, Appl. Phys. Lett. 65, 2484 (1994)

    Article  CAS  Google Scholar 

  5. J. Yang, S.B. Park, H.G. Yoon, Y.M. Huh, S. Haam, Int. J. Pharm. 324, 185–190 (2006)

    Article  CAS  Google Scholar 

  6. F.X. Hu, K.G. Neoh, E.T. Kang, Biomaterials 27, 5725–5733 (2006)

    Article  CAS  Google Scholar 

  7. Y.L. Luo, L.H. Fan, F. Xu, Y.S. Chen, C.H. Zhang, Q.B. Wei, Mater. Chem. Phys. 120, 590–597 (2010)

    Article  CAS  Google Scholar 

  8. K.V.P.M. Shafi, Y. Koltypin et al., J. Phys. Chem. B 101, 6409 (1997)

    Article  CAS  Google Scholar 

  9. M. Khaldi, A. Benyoucef, C. Quijada, A. Yahiaoui, E. Morallon, J. Inorg. Organomet. Polym. Mater. 24, 267–274 (2014)

    Article  CAS  Google Scholar 

  10. Z. Cai, C.R. Martin, J. Am. Chem. Soc. 111, 4138 (1989)

    Article  CAS  Google Scholar 

  11. S.K. Chakarvarti, J. Vetter, Nucl. Instrum. Methods Phys. Res. B 62, 109 (1991)

    Article  Google Scholar 

  12. S.K. Chakarvarti, J. Vetter, J. Micromech. Microeng. 3, 57 (1993)

    Article  CAS  Google Scholar 

  13. S. Larumbe, C.G. Polo, J.I.P. Landazábal, A.G. Prieto, J. Nanosci. Nanotechnol. 12, 1–9 (2012)

    Article  Google Scholar 

  14. S. Benykhlef, A. Bekhoukh, R. Berenguer, E. Morallon, Colloid Polym. Sci. 294, 1877–1885 (2016)

    Article  CAS  Google Scholar 

  15. I. Radja, H. Djelad, E. Morallon, A. Benyoucef, Synth. Met. 202, 25–32 (2015)

    Article  CAS  Google Scholar 

  16. M. Kooti, A.N. Sedeh, J. Mater. Sci. Technol. 29, 34–38 (2013)

    Article  CAS  Google Scholar 

  17. F.S. Tehrani, V. Daadmehr, A.T. Rezakhani, J. Supercond. Novel Magn. 25, 2443–2455 (2012)

    Article  Google Scholar 

  18. M.H. Sousa, F. Augusta, J. Phys. Chem. 105, 1168–1175 (2001)

    Article  CAS  Google Scholar 

  19. F. Chouli, I. Radja, E. Morallon, A. Benyoucef, Polym. Compos. (2015)

  20. R. Galindo, E. Mazario, S. Gutiérrez, M.P. Morales, P. Herrasti, J. Alloys Compd., 536S, S241–S244, (2012)

    Article  Google Scholar 

  21. G. Fan, Z. Yang, L. Li, J. Chem. Eng. 155, 534 (2009)

    Article  CAS  Google Scholar 

  22. S.Y. Vilar, M.S. Andujar, C.G. Aguirrea, J. Mira, M.A.S. Rodrıguez, J. Solid State Chem. 182, 2685–2690 (2009)

    Article  Google Scholar 

  23. R.H. Kodama, J. Magn. Magn. Mater. 200, 359 (1999)

    Article  CAS  Google Scholar 

  24. S. Prasad, N.S. Gajbhiye, J. Alloys Compd. 265, 87 (1998)

    Article  CAS  Google Scholar 

  25. S. Son, M. Taheri, E. Carpenter, J. Appl. Phys. 91, 7589 (2002)

    Article  CAS  Google Scholar 

  26. F.Z. Dahou, M.A. Khaldi, A. Zehhaf, A. Benyoucef, M.I. Ferrahi, Adv. Polym. Technol. 35, 1–8 (2016)

    Article  Google Scholar 

  27. S.K.E. Islam, P. Sharma, J. Nano Electron. Phys. 6, 1–4 (2014)

    CAS  Google Scholar 

  28. R. Asokarajan, A.M.F. Benial, K. Neyvasagam, Int. J. Nanosci. Nanotechnol. 4, 113–120 (2013)

    Google Scholar 

  29. P.H. Gomez, J.M. Munoz, M.A. Valente, C. Torres, C. de Francisco, Eur. Phys. J. Conf. 40, 170031–170034 (2013)

    Google Scholar 

  30. V.R. Cosovic, N.M. Talijan, A.R. Cosovic, J. Trends Dev. Mach. Assoc. Technol. 18, 115–118 (2014)

    Google Scholar 

  31. R. Suresh, P. Moganavally, M. Deepa, Int. J. ChemTech Res. 8, 113–116 (2015)

    CAS  Google Scholar 

  32. Z.P. Cherkezova-Zheleva, K.L. Zaharieva, V.S. Petkova, B.N. Kunev, I.G. Mitov, Bulg. Chem. Commun. 44, 24–29 (2012)

    Google Scholar 

  33. K. Maaz, S. Karim, S.K. Mumtaz, Hasanain, J. Liu, L. Duan, J. Magn. Magn. Mater. 321, 1838–1842 (2009)

    Article  CAS  Google Scholar 

  34. A. Gatelyte, D. Jasaitis, A. Beganskiene, A. Kareiva, Mater. Sci. 17, 302–307 (2011)

    Google Scholar 

  35. S. Omprakash, A.S. Roy, P.S. Naik, Int. J. Basic Appl. Res. 1, 17–23 (2011)

    Google Scholar 

  36. K. Rafeekali, M. Maheem, E.M. Mohammed, Int. J. Eng. Sci. Innov. Technol. 4, 194–198 (2015)

    Google Scholar 

  37. E. Perez, C.G. Polo, S. Larumbe, J.I.P. Landazabal, V. Sagredo, Revista Mexicana de Fisica S, 58, 104–107 (2012)

    CAS  Google Scholar 

  38. M.P. Reddy, W. Madhuri, K. Sadhana, J. Sol-Gel. Sci. Technol. 70, 400–404 (2014)

    Article  Google Scholar 

  39. B.P. Jacob, A. Kumar, R.P. Pant, S. Singh, E.M. Mohammed, Bull. Mater. Sci. 34, 345–1350 (2011)

    Article  Google Scholar 

  40. K. Nejati, R. Zabihi, Chem. Cent. J. 6, 1–6 (2012)

    Article  Google Scholar 

  41. S. Diodati, L. Pandolfo, A. Caneschi, S. Gialanella, Nano Res. 7, 1027–1042 (2014)

    Article  CAS  Google Scholar 

  42. N. Kasapoglu, A. Baykal, M.S. Toprak, Y. Koseoglu, H. Bayrakdar, Turk. J. Chem. 31, 659–666 (2007)

    CAS  Google Scholar 

  43. F. Chouli, A. Zehhaf, A. Benyoucef, Macromol. Res. 22, 26–31 (2014)

    Article  CAS  Google Scholar 

  44. Z.H. Zhou, J.M. Xue, J. Wang, J. Appl. Phys. 91, 6015–6020 (2002)

    Article  CAS  Google Scholar 

  45. R. Gopal, S.C. Singh, R.K. Swarnkar, Nano Sci. Technol. Inst. 1, 166–169 (2009)

    CAS  Google Scholar 

  46. H. Kavas, N. Kasapoglu, A. Baykal, Y. Koseoglu, Chem. Pap. 63, 450–455, (2009)

    Article  CAS  Google Scholar 

  47. H.R. Ghorbani, A.A. Safekordi, H. Attar, S.M. Rezayat Sorkhabadi, Chem. Biochem. Eng. Q. 25, 317–326 (2011)

    CAS  Google Scholar 

  48. A.B. Seabra, N. Durán, Metals 5, 934–975 (2015)

    Article  CAS  Google Scholar 

  49. P.S. Foner, Rev. Sci. Instrum. 30, 548–557 (1959)

    Article  Google Scholar 

  50. C. Suryanarayana, M.G. Norton, X-Ray Diffraction: A Practical Approach, 1st edn. (Springer Science + Business Media, New York, 1998)

    Book  Google Scholar 

  51. A.R. West, Basic Solid State Chemistry, 2nd edn. (Wiley, New York, 1987)

    Google Scholar 

  52. A. Dey, A.K. Mukhopadhyay, S. Gangadharan, M.K. Sinha, J. Therm. Spray Technol. 18, 578 (2009)

    Article  CAS  Google Scholar 

  53. J. Singh, M. Srivastava, A. Roychoudhury, D.W. Lee, S.H. Lee, B.D. Malhotra, J. Phys. Chem. B 117, 141 (2013)

    Article  CAS  Google Scholar 

  54. S. Kumar, P. Sharma, V. Sharma, J. Appl. Phys. 111, 113510 (2012)

    Article  Google Scholar 

  55. R. Asokarajan, Int. J. Nanosci. Nanotechnol. 4, 113–120 (2013)

    Google Scholar 

  56. R. Das, M.E. Ali, S.B.A. Hamid, Rev. Adv. Mater. Sci. 38, 95–109 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. B. Tahir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tahir, M.B., Iqbal, T., Hassan, A. et al. Wet Chemical Co-precipitation Synthesis of Nickel Ferrite Nanoparticles and Their Characterization. J Inorg Organomet Polym 27, 1430–1438 (2017). https://doi.org/10.1007/s10904-017-0598-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-017-0598-5

Keywords

Navigation