Comparative Studies of the Properties of ZnO Sprayed Thin Films on Different Polymer Substrates for Flexible Solar Cell Applications

  • M. G. FarajEmail author
  • P. Taboada


Zinc oxide (ZnO) thin films have been deposited onto polyethylene terephthalate (PET) and polyimide (PI) substrates using the chemical spray pyrolysis technique in order to explore their potential use as transparent window materials for solar cells. The substrate temperature along deposition of the material was maintained at 250 °C. The effects of substrate types on the structural and optical characteristics of the formed films were studied. X-ray diffraction patterns confirm the proper phase formation of crystalline ZnO films. Films deposited on PI exhibited a larger roughness compared to those deposited onto PET substrates because of the large particles adsorbed on the former. Optical transmittance values exceeding 80% in the visible and infra-red (IR) region on both substrates were registered. Optical band gaps (Eg) from Tauc plots for ZnO films on PET achieved values of ca. 3.2 eV whilst on PI were ca. 3.3 eV. Surface reflectance shows that ZnO on PI has consistently a higher surface reflectance of ca. ~2% throughout the spectral region compared to ZnO films on PET substrates while both showed a parasitic absorbance below 10% within the region of interest.


Zinc oxide Polyethylene terephthalate Polyimide Chemical spray pyrolysis Optical properties Window layer Solar cells 



The author M. G. Faraj would like to thank Koya University and Erasmus Mundus Marhaba program for the permission given to carry out part of his research activities abroad. P. T. thanks MINECO for project MAT2016-80266R and Xunta de Galicia for project GPC2015-007. FEDER funds are also greatly acknowledged.


  1. 1.
    P.F. Yang, H.C. Wen, S.R. Jian, Y.S. Lai, S. Wu, R.S. Chen, Characteristics of ZnO thin films prepared by radio frequency magnetron sputtering. Microelectron. Reliab. 48, 389–394 (2008)CrossRefGoogle Scholar
  2. 2.
    J.S. Wellings, N.B. Chaure, S.N. Heavens, I.M. Dharmadasa, Growth and characterisation of electrodeposited ZnO thin films. Thin Solid Films 516, 3893–3898 (2008)CrossRefGoogle Scholar
  3. 3.
    J. Müller, G. Schöpe, O. Kluth, B. Rech, V. Sittinger, B. Szyszka, R. Geyer, P. Lechner, H. Schade, M. Ruske, G. Dittmar, H.-P. Bochem, State-of-the-art mid-frequency sputtered ZnO films for thin film silicon solar cells and modules. Thin Solid Films 442, 158–162 (2003)CrossRefGoogle Scholar
  4. 4.
    J. Müller, O. Kluth, S. Wieder, H. Siekmann, G. Schöpe, W. Reetz, O. Vetterl, D. Lundszien, A. Lambertz, F. Finger, B. Rech, H. Wagner, Development of highly efficient thin film silicon solar cells on texture-etched zinc oxide-coated glass substrate. Sol. Energy Mater. Sol. Cells 66, 275–281 (2001)CrossRefGoogle Scholar
  5. 5.
    D. Kim, T. Shimomura, S. Wakaiki, T. Terashita, M. Nakayama, Photoluminescence properties of high-quality ZnO thin films prepared by an RF-magnetron sputtering method. Physica B 376–377, 741–744 (2006)CrossRefGoogle Scholar
  6. 6.
    T. Maruyama, J. Shionoya, Zinc oxide thin films prepared by chemical vapour deposition from zinc acetate. J. Mater. Sci. Lett. 11, 170–172 (1992)CrossRefGoogle Scholar
  7. 7.
    G. Srinivasan, J. Kumar, Optical and structural characterization of zinc oxide thin films prepared by sol-gel process. Cryst. Res. Technol. 41, 893–896 (2006)CrossRefGoogle Scholar
  8. 8.
    S.J. Lim, Soonju Kwon, H. Kim, ZnO thin films prepared by atomic layer deposition and rf sputtering as an active layer for thin film transistor. Thin Solid Films 516, 1523–1528 (2008)CrossRefGoogle Scholar
  9. 9.
    M.G. Faraj, K. Ibrahim, Optical and structural properties of thermally evaporated zinc oxide thin films on polyethylene terephthalate substrates. Int. J. Polym. Sci. 2011, 302843 (2011)CrossRefGoogle Scholar
  10. 10.
    L. Zhao, J. Lian, Y. Liu, Q. Jiang, Structural and optical properties of ZnO thin film deposited on quartz glass by pulsed laser deposition, Appl. Surf. Sci. 252, 8451–8455 (2006)CrossRefGoogle Scholar
  11. 11.
    R. Ayouchi, D. Leinen, F. Martín, M. Gabas, E. Dalchiele, J.R. Ramos-Barrado, Preparation and characterization of transparent ZnO thin films obtained by spray pyrolysis. Thin Solid Films 426, 68–77 (2003)CrossRefGoogle Scholar
  12. 12.
    H.H. Afifi, S.A. Mahmoud, A. Ashour, Structural study of ZnS thin films prepared by spray pyrolysis. Thin Solid Films 263, 248–251 (1995)CrossRefGoogle Scholar
  13. 13.
    M.G. Faraj, H.D. Omar, The effect of substrate temperature on the structural properties of spray pyrolysed lead sulphide (PbS) thin films. ARO Sci. J. Koya Univ. 2, 11–14(2014)Google Scholar
  14. 14.
    N. Lehraki, M.S. Aida, S. Abed, N. Attaf, A. Attaf, M. Poulain, ZnO thin films deposition by spray pyrolysis: Influence of precursor solution properties. Curr. Appl. Phys. 12, 1283–1287 (2012)CrossRefGoogle Scholar
  15. 15.
    A.N. Banerjee, C.K. Ghosh, K.K. Chattopadhyay, H. Minoura, A.K. Sarkar, A. Akiba, A. Kamiya, T. Endo, Low-temperature deposition of ZnO thin films on PET and glass substrates by DC-sputtering technique. Thin Solid Films 496, 112–116 (2006)CrossRefGoogle Scholar
  16. 16.
    M. Garganourakis, S. Logothetidis, C. Pitsalidis, D. Georgiou, S. Kassavetis, A. Laskarakis, Deposition and characterization of PE./ZnO layers onto PET substrates. Thin Solid Films 517, 6409–6413 (2009)CrossRefGoogle Scholar
  17. 17.
    Y.S. Park, H.K. Kim, S.W. Jeong, W.J. Cho, Highly flexible indium zinc oxide electrode grown on PET substrate by cost efficient roll-to-roll sputtering process. Thin Solid Films 518, 3071–3074 (2010)CrossRefGoogle Scholar
  18. 18.
    M.G. Faraj, K. Ibrahim, A. Salhin, Effects of Ga concentration on structural and electrical properties of screen printed-CIGS absorber layers on polyethylene terephthalate. J. Mater. Sci. Semicond. Process. 15, 206–2013 (2012)CrossRefGoogle Scholar
  19. 19.
    M.G. Faraj, M.Z. Pakhuruddin, Deposited Lead Sulfide Thin Films on Different Substrates with Chemical Spray Pyrolysis Technique. Int. J. Thin Films Sci. Technol. 4, 215–217 (2015)Google Scholar
  20. 20.
    M.G. Faraj, K. Ibrahim, A. Salhin, Fabrication and characterization of thin-film Cu (In,Ga)Se2 solar cells on a PET plastic substrate using screen printing. J. Mater. Sci. Semicond. Process. 15, 165–173 (2012)CrossRefGoogle Scholar
  21. 21.
    C.K. Yew, Express chemistry form 4. (Pelangi ePublishing Sdn Bhd, Johor Bahru, 2012), p. 230Google Scholar
  22. 22.
    M. Kraini, N. Bouguila, I. Halidou, A. Moadhen, C. Vázquez-Vázquez, M.A. López-Quintela, S. Alaya, Study of optical and electrical properties of In2S3: Sn films deposited by spray pyrolysis. J. Electron. Mater. 44, 2536–2543 (2015)CrossRefGoogle Scholar
  23. 23.
    E.H. Kisi, M.M. Elcombe, u parameters for the wurtzite structure of ZnS and ZnO using powder neutron diffraction. Acta Crystallogr. Sect. C 45, 1867–1870 (1989)CrossRefGoogle Scholar
  24. 24.
    C. Guillén, J. Herrero, Comparison study of ITO thin films deposited by sputtering at room temperature onto polymer and glass substrates. Thin Solid Films 480–481, 129–132 (2005)CrossRefGoogle Scholar
  25. 25.
    A.N. Banerjee, C.K. Ghosh, K.K. Chattopadhyay, H. Minoura, A. K. Sarkar, A. Akiba, A. Kamiya, T. Endo, Low-temperature deposition of ZnO thin films on PET and glass substrates by DC-sputtering technique. Thin Solid Films 496, 112–116 (2006)CrossRefGoogle Scholar
  26. 26.
    L.S. Birks, H. Friedman, Particle size determination from X-ray line broadening. J. Appl. Phys. 17, 687–692 (1948)CrossRefGoogle Scholar
  27. 27.
    J.J. Hassan, Z. Hassan, H. Abu-Hassan, High-quality vertically aligned ZnO nanorods synthesized by microwave-assisted CBD with ZnO–PVA complex seed layer on Si substrates. J. Alloys Compd. 509, 6711–6719 (2011)CrossRefGoogle Scholar
  28. 28.
    M.Z. Pakhuruddin, K. Ibrahim, A.A. Aziz, Properties of aluminum thin films on polyimide plastics as back contacts in thin film silicon solar cells, Adv. Mater. Res. 620,474–479 (2013)CrossRefGoogle Scholar
  29. 29.
    M.G. Faraj, K. Ibrahim, M.H. Eisa, M.A. Alrajhi, Comparison of Aluminium Thin Film deposited on different polymer substrates with thermal evaporation for Solar Cell Applications. J. Ovonic Res. 10, 231–235 (2014)Google Scholar
  30. 30.
    M.G. Faraj, K. Ibrahim, Comparison of cadmium sulfide thin films deposited on glass and polyethylene terephthalate substrates with thermal evaporation for solar cell applications. J. Mater. Sci. 23, 1219–1223 (2012)Google Scholar
  31. 31.
    X.-T. Hao, J. Ma, D.-H. Zhang, Y.-G. Yang, H.-L. Ma, C.-F. Cheng, X.-D. Liu, Comparison of the properties for ZnO:Al films deposited on polyimide and glass substrates. Mater. Sci. Eng. 90, 50–54 (2002)CrossRefGoogle Scholar
  32. 32.
    M.G. Faraj, K. Ibrahim, M.H. Eisa, M.K.M. Pakhuruddin, M.Z. Pakhuruddin, Comparison of Zinc Oxide thin films deposited on the glass and polyethylene terephthalate substrates by thermal evaporation technique for applications in solar cells. Optoelectron. Adv. Mater. 4, 1587–1590 (2010)Google Scholar
  33. 33.
    J. Nelson, The physics of solar cells. (Imperial College Press, London, 2003)CrossRefGoogle Scholar
  34. 34.
    J. Tauc, Amorphous and Liquid Semiconductors. Plenum press, New York, 1974)CrossRefGoogle Scholar
  35. 35.
    C. Jagadish, S. Pearton, Zinc oxide bulk, thin films and nanostructures processing, properties and applications. (Elsevier Ltd., Amsterdam, 2006)Google Scholar
  36. 36.
    R.E.I. Schropp, M. Zeman, Amorphous and microcrystalline silicon solar cells: modelling, materials and device technology. Kluwer Academic Publishers, Boston, 1998)CrossRefGoogle Scholar
  37. 37.
    M.A. Green, Silicon solar cells: advanced principles and practice. (Centre for Photovoltaic Devices and systems, University of New South Wales, Sydney, 1995)Google Scholar
  38. 38.
    R. Brendel, Thin-film crystalline silicon solar cells: physics and technology. (Wiley-VCH, Weinheim, 2001)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Grupo de Física de Coloides y Polímeros, Departamento de Física de PartículasUniversidad de Santiago de CompostelaSantiago de CompostelaSpain
  2. 2.Department of Physics, Faculty of Science and HealthKoya UniversityUniversity ParkIraq

Personalised recommendations