Tetragonal Diiodotetrapyridinedicopper(I): Structure, Luminescence, and Computational Modeling

  • Andrew W. Kelly
  • Joseph V. Handy
  • Aaron D. Nicholas
  • Francis H. Barnes
  • Howard H. Patterson
  • Lukasz Wojtas
  • Robert D. Pike


We report on a new crystal modification of (CuIPy2) n (Py = pyridine), a compound first reported by White et al. In contrast to White’s orthorhombic structure, which is comprised of rhomboid iodide-bridged dimers, Cu2I2Py4, our new tetragonal crystal structure in space group P41212 is disordered and can be interpreted as either iodide-bridged dimers or helical chains. To determine the structure type, variable temperature X-ray diffraction and luminescence measurements were carried out. The photoluminescence spectrum shows a distinct cluster-centered transition at high excitation energies which is consistent with the dimer structure. DFT and TD-DFT calculations were performed to explain the difference between the emission spectrum at high energies compared to low energies. Furthermore, correlation of the luminescence spectrum with the X-ray results as temperature is varied demonstrates that the cluster-centered luminescence band in Cu2I2Py4 arises from close Cu⋯Cu distances which vary with temperature. A low temperature X-ray crystallographic redetermination of the cubane tetrameric Cu4I4Py4 is also presented. Both Cu2I2Py4 and Cu4I4Py4 structures show distortion of the Cu n I n core cluster at low temperature resulting in reduced Cu⋯Cu distances, but with I⋯I distances roughly unchanged.


Copper(I) iodide Pyridine Dimer Polymorph Luminescence X-ray crystal structure Density functional theory 



We are indebted to NSF (CHE-0443345) and the College of William and Mary for the purchase of the X-ray equipment.

Supplementary material

10904_2017_584_MOESM1_ESM.docx (3.8 mb)
Crystallographic information on CCDC 1529200-1529204 can be obtained free of charge by e-mailing or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, CB2 1EZ UK; Fax +44(0)1223-336033; (DOCX 3897 KB)


  1. 1.
    C.L. Raston, A.H. White, J. Chem. Soc. Dalton Trans. 2153 (1976)Google Scholar
  2. 2.
    A. Bondi, J. Phys. Chem. 68, 441 (1964)CrossRefGoogle Scholar
  3. 3.
    K.R. Kyle, C.K. Ryu, J.A. DiBenedetto, P.C. Ford, J. Am. Chem. Soc. 113, 2954 (1991)CrossRefGoogle Scholar
  4. 4.
    P.C. Ford, E. Cariati, J. Bourassa, Chem. Rev. 99, 3625 (1999)CrossRefGoogle Scholar
  5. 5.
    M. Vitale, P.C. Ford, Coord. Chem. Rev. 219–221, 3 (2001)CrossRefGoogle Scholar
  6. 6.
    E. Eitel, D. Oelkrug, W. Hiller, J. Strähle, Z. Naturforsch. 35b, 1247 (1980)Google Scholar
  7. 7.
    J.C. Dyason, L.M. Engelhardt, P.C. Healy, A.H. White, Aust. J. Chem. 37, 2201 (1984)CrossRefGoogle Scholar
  8. 8.
    P.M. Graham, R.D. Pike, M. Sabat, R.D. Baily, W.T. Pennington, Inorg. Chem. 39, 5121 (2000)CrossRefGoogle Scholar
  9. 9.
    PLUS SAINT, Bruker Analytical X-ray Systems. (Madison, 2001)Google Scholar
  10. 10.
    SADABS, Bruker Analytical X-ray Systems. (Madison, 2001)Google Scholar
  11. 11.
    G.M. Sheldrick Acta Crystallogr. Sect. A 64, 112 (2008)CrossRefGoogle Scholar
  12. 12.
    C.B. Hübschle, G.M. Sheldrick, B. Dittrich, J. Appl. Cryst. 44, 1281 (2011)CrossRefGoogle Scholar
  13. 13.
    Diffrac-EVA 3.1, Bruker Analytical X-ray Systems. (Madison, 2012)Google Scholar
  14. 14.
    Mercury 3.9: Cambridge Crystallographic Data Centre (2016)Google Scholar
  15. 15.
    M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, (Gaussian, Inc., Wallingford, 2010)Google Scholar
  16. 16.
    A.D. Becke, J. Chem. Phys. 98, 5648 (1993)CrossRefGoogle Scholar
  17. 17.
    C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37785 (1988)Google Scholar
  18. 18.
    Cambridge Crystallographic Database. Accessed 1 June 2017Google Scholar
  19. 19.
    P.C. Healy, C. Pakawatchai, A.H. White, J. Chem. Soc. Dalton Trans. 1917 (1983)Google Scholar
  20. 20.
    W. Hiller, Z. Naturforsch. B 39, 861 (1984)Google Scholar
  21. 21.
    P.C. Healy, C. Pakawatchai, A.H. White, J. Chem. Soc. Dalton Trans. 2531 (1985)Google Scholar
  22. 22.
    N.P. Rath, E.M. Holt, K. Tanimura, J. Chem, Soc. Dalton Trans. 2303 (1986)Google Scholar
  23. 23.
    A.J. Blake, N.R. Brooks, N.R. Champness, P.A. Cooke, M. Crew, A.M. Deveson, L.R. Hanton, P. Hubberstey, D. Fenske, M. Schroder, Cryst. Eng, 2, 181 (1999)CrossRefGoogle Scholar
  24. 24.
    S.R. Batten, J.C. Jeffery, M.D. Ward, Inorg. Chim. Acta 292, 231 (1999)CrossRefGoogle Scholar
  25. 25.
    D.A. McMorran, P.J. Steel, J. Chem. Soc., Dalton Trans. 3321 (2002)Google Scholar
  26. 26.
    C. Nather, I. Jess, N. Lehnert, D. Hinz-Hubner, Solid State Sci. 5, 1343 (2003)CrossRefGoogle Scholar
  27. 27.
    C.M. Fitchett, P.J. Steel, Polyhedron 27, 1527 (2008)CrossRefGoogle Scholar
  28. 28.
    E. Haldon, E. Alvarez, M.C. Nicasio, P.J. Perez, Organometallics 28, 3815 (2009)CrossRefGoogle Scholar
  29. 29.
    W. Liu, Y. Fang, G.Z. Wei, S.J. Teat, K. Xiong, Z. Hu, W.P. Lustig, J. Li, J. Am. Chem. Soc. 137, 9400 (2015)CrossRefGoogle Scholar
  30. 30.
    H. Kitagawa, H. Ohtsu, M. Kawano, Angew. Chem. Int. Ed. 52, 12395 (2013)CrossRefGoogle Scholar
  31. 31.
    H. Kitagawa, H. Ohtsu, A.J. Cruz-Cabeza, M. Kawano, IUCrJ 3, 232 (2016)CrossRefGoogle Scholar
  32. 32.
    X. Haiyan, I. Kinoshita, T. Karasawa, K. Kimura, T. Nishioka, I. Akai, K. Kanemoto, J. Phys. Chem. B 109, 9339 (2005)CrossRefGoogle Scholar
  33. 33.
    I. Krytchankou, I. Koshevoy, V. Gurzhiy, V. Pomogaev, S. Tunik, Inorg. Chem. 54, 8288 (2015)CrossRefGoogle Scholar
  34. 34.
    H. Rasika Dias, H. Diyabalanage, M. Rawashdeh-Omary, M. Franzman, M. Omary, J. Am. Chem. Soc. 125, 12071 (2003)Google Scholar
  35. 35.
    F. DeAngelis, S. Fantacci, A. Sgamellotti, E. Cariati, R. Ugo, P. Ford, Inorg. Chem. 45, 10576 (2006)CrossRefGoogle Scholar
  36. 36.
    K. Shimada, A. Kobayashi, Y. Ono, H. Ohara, T. Hasegawa, T. Taketsugu, E. Sakuda, S. Akagi, N. Kitamura, M. Kato, J. Phys. Chem. C 120, 16002 (2016)CrossRefGoogle Scholar
  37. 37.
    A. Tsuboyama, K. Kuge, M. Furugori, S. Okada, M. Hoshino, K. Ueno, Inorg. Chem. 46, 1992 (2007)CrossRefGoogle Scholar
  38. 38.
    Y. Okano, H. Ohara, A. Kobayashi, M. Yoshida, M. Kato, Inorg. Chem. 55, 5227 (2016)CrossRefGoogle Scholar
  39. 39.
    P. Ford, E. Cariati, J. Bourassa, Chem. Rev. 99, 3625 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Andrew W. Kelly
    • 1
  • Joseph V. Handy
    • 1
  • Aaron D. Nicholas
    • 2
  • Francis H. Barnes
    • 2
  • Howard H. Patterson
    • 2
  • Lukasz Wojtas
    • 3
  • Robert D. Pike
    • 1
  1. 1.Department of ChemistryCollege of William and MaryWilliamsburgUSA
  2. 2.Department of ChemistryUniversity of MaineOronoUSA
  3. 3.Department of ChemistryUniversity of South FloridaTampaUSA

Personalised recommendations