Advertisement

The Effect of Number of Porphyrin Polymer Units on Bandgap for ππ* Conjugation and Charge Transfer System Based on Simulation

  • Sanxiao Zhao
  • Gang Wang
  • Yingkai Sun
  • Jie Jiang
  • Yan Zhang
  • Xiaorong Wang
Article
  • 166 Downloads

Abstract

This paper discusses the effect of number of units on bandgap for conjugation versus charge transfer system by using a conjugated polymer ([Zn])n and an unconjugated planar push–pull one (AQ–[Zn])n built upon 2,3-anthraquinone and bis(ethynyl)zinc(II)porphyrin. They are supported by DFT and TDDFT calculations, along with some experimental data. The position of the Q-bands is highly adjustable due to the presence of the twisted conformations in ([Zn])n chain.

Keywords

Bandgap Conjugation Charge transfer Porphyrin Push–pull 

Notes

Acknowledgements

This work was supported by Talent Scientific Research Fund of LSHU (No. 2016XJJ-010), the 2016 General Project of Education Department of Liaoning Province (No. L2016003) and the Opening Funds of Key Lab of Beifang University of Nationalities (No. 1605).

Supplementary material

10904_2017_575_MOESM1_ESM.docx (11.5 mb)
Supplementary material 1 (DOCX 11770 KB)

References

  1. 1.
    S. Mathew, A. Yella, P. Gao, R. Humphrey-Baker, B.F.E. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, Md.K. Nazeeruddin, M. Grätzel, Nature Chem. 6, 242 (2014)CrossRefGoogle Scholar
  2. 2.
    X. Huang, Q. Shi, W.-Q. Chen, C. Zhu, W. Zhou, Z. Zhao, X.-M. Duan, X. Zhan, Macromolecules 43, 9620 (2010)CrossRefGoogle Scholar
  3. 3.
    H.-M. Zhan, S. Lamare, A. Ng, T. Kenny, H. Guernon, W.-K. Chan, A.B. Djurisic, P.D. Harvey, W.-Y. Wong, Macromolecules 44, 5155 (2011)CrossRefGoogle Scholar
  4. 4.
    S. Chen, L. Xiao, X. Zhu, X. Peng, W.K. Wong, W.Y. Wong, Chem. Commun. 51, 14439 (2015)CrossRefGoogle Scholar
  5. 5.
    H. Wang, L. Xiao, L. Yan, S. Chen, X. Zhu, X. Peng, X. Wang, W.-K. Wong, W.-Y. Wong, Chem. Sci. 7, 4301 (2016)CrossRefGoogle Scholar
  6. 6.
    L. Xiao, S. Chen, K. Gao, X. Peng, F. Liu, Y. Cao, W.-Y. Wong, W.-K. Wong, X. Zhu, ACS Appl. Mater. Interfaces 8, 30176 (2016)CrossRefGoogle Scholar
  7. 7.
    S. Chang, H. Wang, Y. Hua, Q. Li, X. Xiao, W.K. Wong, W.Y. Wong, X. Zhu, T. Chen, J. Mater. Chem. A 1, 11553 (2013)CrossRefGoogle Scholar
  8. 8.
    W.-Y. Wong, P.D. Harvey, Macromol. Rapid Commun. 31, 671 (2010)CrossRefGoogle Scholar
  9. 9.
    C.-L. Ho, W.-Y. Wong, Coord. Chem. Rev. 255, 2469 (2011)CrossRefGoogle Scholar
  10. 10.
    C.L. Ho, W.Y. Wong, Coord. Chem. Rev. 257, 1614 (2013)CrossRefGoogle Scholar
  11. 11.
    C.L. Ho, Z.Q. Yu, W.Y. Wong, Chem. Soc. Rev. 45, 5264 (2016)CrossRefGoogle Scholar
  12. 12.
    W.Y. Wong, C.L. Ho, Acc. Chem. Res. 43, 1246 (2010)CrossRefGoogle Scholar
  13. 13.
    L. Li, W.C. Chow, W.Y. Wong, C.H. Chui, S.M. Wong, J. Oranomet. Chem. 696, 1189 (2011)CrossRefGoogle Scholar
  14. 14.
    M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 09, Revision D. 01 (Gaussian, Inc., Wallingford, 2009)Google Scholar
  15. 15.
    P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964)CrossRefGoogle Scholar
  16. 16.
    W. Kohn, L. Sham, J. Phys. Rev. 140, A1133 (1965)CrossRefGoogle Scholar
  17. 17.
    D.R. Salahub, M.C. Zerner, The Challenge of d and f Electrons. (American Chemical Society, Washington, D.C, 1989)CrossRefGoogle Scholar
  18. 18.
    R.G. Parr, W. Yang, Density-functional Theory of Atoms and Molecules (Oxford University Press, Oxford, 1989)Google Scholar
  19. 19.
    R.E. Stratmann, G.E. Scuseria, M.J. Frisch, J. Chem. Phys. 109, 8218 (1998)CrossRefGoogle Scholar
  20. 20.
    R. Bauernschmitt, R. Ahlrichs, Chem. Phys. Lett. 256, 454 (1996)CrossRefGoogle Scholar
  21. 21.
    M.E. Casida, C. Jamorski, K.C. Casida, D.R. Salahub, J. Chem. Phys. 108, 4439 (1998)CrossRefGoogle Scholar
  22. 22.
    A.D. Becke, J. Chem. Phys. 98, 5648 (1993)CrossRefGoogle Scholar
  23. 23.
    C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988)CrossRefGoogle Scholar
  24. 24.
    B. Miehlich, A. Savin, H. Stoll, H. Preuss, Chem. Phys. Lett. 157, 200 (1989)CrossRefGoogle Scholar
  25. 25.
    J.S. Binkley, J.A. Pople, W.J. Hehre, J. Am. Chem. Soc. 102, 939 (1980)CrossRefGoogle Scholar
  26. 26.
    M.S. Gordon, J.S. Binkley, J.A. Pople, W.J. Pietro, W.J. Hehre, J. Am. Chem. Soc. 104, 2797 (1982)CrossRefGoogle Scholar
  27. 27.
    W.J. Pietro, M.M. Francl, W.J. Hehre, D.J. Defrees, J.A. Pople, J.S. Binkley, J. Am. Chem. Soc. 104, 5039 (1982)CrossRefGoogle Scholar
  28. 28.
    K.D. Dobbs, W.J. Hehre, J. Comput. Chem. 7, 359 (1986)CrossRefGoogle Scholar
  29. 29.
    K.D. Dobbs, W.J. Hehre, J. Comput. Chem. 8, 861 (1987)CrossRefGoogle Scholar
  30. 30.
    K.D. Dobbs, W.J. Hehre, J. Comput. Chem. 8, 880 (1987)CrossRefGoogle Scholar
  31. 31.
    N. Godbout, D.R. Salahub, J. Andzelm, E. Wimmer, Can. J. Chem. 70, 560 (1992)CrossRefGoogle Scholar
  32. 32.
    SBKJC ECP EMSL Basis Set Exchange LibraryGoogle Scholar
  33. 33.
    W.J. Stevens, M. Krauss, H. Basch, P.G. Jasien, Can. J. Chem. 70, 612 (1992)CrossRefGoogle Scholar
  34. 34.
    N.M. O’boyle, A.L. Tenderholt, K.M. Langner, J. Comput. Chem. 29, 839 (2008)CrossRefGoogle Scholar
  35. 35.
    M.J. Namazian, Mol. Struct. 664, 273 (2003)CrossRefGoogle Scholar
  36. 36.
    X. Wang, G. Brisard, D. Fortin, P.-L. Karsenti, P.D. Harvey, Macromolecules 48, 7024 (2015)CrossRefGoogle Scholar
  37. 37.
    C. She, S. Easwaramoorthi, P. Kim, S. Hiroto, I. Hisaki, I. Shinokubo, A. Osuka, D. Kim, J.T. Hupp, J. Phys. Chem. A 114, 3384 (2010)Google Scholar
  38. 38.
    X. Wang, D. Fortin, G. Brisard, P.D. Harvey, Macromol. Rapid Commun. 35, 992 (2014)CrossRefGoogle Scholar
  39. 39.
    J. Yang, A. Dass, A.-M.M. Rawashdeh, C. Sotiriou Leventis, M.J. Panzner, D.S. Tyson, J.D. Kinder, N. Leventis, Chem. Mater. 16, 3457 (2004)CrossRefGoogle Scholar
  40. 40.
    M.U. Winters, J. Kaernbratt, M. Eng, C.J. Wilson, H.L. Anderson, B. Albinsson, J. Phys. Chem. C 111, 7192 (2007)CrossRefGoogle Scholar
  41. 41.
    F.-L. Jiang, D. Fortin, P.D. Harvey, Inorg. Chem. 49, 2614 (2010)CrossRefGoogle Scholar
  42. 42.
    S. Clément, T. Goudreault, D. Bellows, D. Fortin, L. Guyard, M. Knorr, P.D. Harvey, Chem. Commun. 48, 8640 (2012)CrossRefGoogle Scholar
  43. 43.
    P.D. Harvey, R. Guilard, in 3rd Handbook on Porphyrins and Phthalocyanines, vol. 11, ed. by K. Kadish, R. Guilard, K.M. Smith (World Science, Singapore, 2011), p. 1Google Scholar
  44. 44.
    P.D. Harvey, in The Porphyrin Handbook, vol. 18, ed. by K.M. Kadish, K.M. Smith, R. Guilard (Academic Press, San Diego, 2003), p. 113Google Scholar
  45. 45.
    D.L. Dexter, J. Chem. Phys. 21, 836 (1953)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Sanxiao Zhao
    • 1
  • Gang Wang
    • 2
  • Yingkai Sun
    • 1
  • Jie Jiang
    • 1
  • Yan Zhang
    • 1
  • Xiaorong Wang
    • 1
  1. 1.College of Chemistry, Chemical Engineering and Environmental EngineeringLiaoning Shihua UniversityFushunChina
  2. 2.Departement de ChimieUniversité de SherbrookeSherbrookeCanada

Personalised recommendations