Skip to main content

Advertisement

Log in

Efficient Organic Dyes Photodegradation Catalyzed by Nickel-Species Loaded Graphitic Carbon Nitride

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In this paper, a series of nickel-species loaded graphitic carbon nitride (g-C3N4) nanohybrid photocatalysts were successfully fabricated via a simple thermal treatment process and characterized by XRD, FT-IR, XPS, SEM, TEM, UV–vis DRS and PL technologies. Photocatalytic tests displayed that the nanohybrids possessed remarkable photocatalytic activity for methylene blue (MB) degradation compared with pure g-C3N4 and P25 TiO2 under visible-light irradiation. Moreover, the activity can be further enhanced by adjusting the pyrolysis temperature and the amount of nickel salt. The maximal photocatalytic efficiency was achieved over the sample that pyrolysed at 650 °C with Ni content of 5% (in precursor), in which 92.1% of MB was degraded under visible light within 2 h. The present work could provide considerable reference value for the study of non-noble metal modified g-C3N4 and pollutant degredation catalysts.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. W.C. Wan, S. Yu, F. Dong, Q. Zhang, Y. Zhou, Efficient C3N4/graphene oxide macroscopic aerogel visible-light photocatalyst. J. Mater. Chem. A. 4, 7823–7829 (2016)

    Article  CAS  Google Scholar 

  2. W. Chen, T.Y. Liu, T. Huang, X.H. Liu, X.J. Yang, Novel mesoporous P-doped graphitic carbon nitride nanosheets coupled with ZnIn2S4 nanosheets as efficient visible light driven heterostructures with remarkably enhanced photo-reduction activity. Nanoscale 8, 3711–3719 (2016)

    Article  CAS  Google Scholar 

  3. K. Dai, L.H. Lu, C.H. Liang, Q. Liu, G.P. Zhu, Heterojunction of facet coupled g-C3N4/surface-fluorinated TiO2 nanosheets for organic pollutants degradation under visible LED light irradiation. Appl. Catal. B-Environ. 156, 331–340 (2014)

    Article  Google Scholar 

  4. X.F. Wang, W.W. Mao, J. Zhang, Y.M. Han, C.Y. Quan, Q.X. Zhang, T. Yang, J.P. Yang, X.A. Li, W. Huang, Facile fabrication of highly efficient g-C3N4/BiFeO3 nanocomposites with enhanced visible light photocatalytic activities. J. Colloid. Interface Sci. 448, 17–23 (2015)

    Article  CAS  Google Scholar 

  5. Z.L. Wang, J.F. Zhang, J.L. Lv, K. Dai, C.H. Liang, Plasmonic Ag2MoO4/AgBr/Ag composite, excellent photocatalytic performance and possible photocatalytic mechanism. Appl. Surf. Sci. 396, 791–798 (2017)

    Article  CAS  Google Scholar 

  6. Y.F. Yang, F. Zhou, S. Zhan, Y.J. Liu, Y.F. Yin, Enhanced photocatalytic activity of BiOCl hybridized with g-C3N4. J. Inorg. Organomet. Polym. 26, 91–99 (2016)

    Article  CAS  Google Scholar 

  7. Z.L. Wang, J.L. lv, K. Dai, L.H. Lu, C.H. Liang, L. Geng, Large scale and facile synthesis of novel Z-scheme Bi2MoO6/Ag3PO4 composite for enhanced visible light photocatalyst. Mater. Lett. 169, 250–253 (2016)

    Article  CAS  Google Scholar 

  8. K. Dai, L.H. Lu, C.H. Liang, J.M. Dai, G.P. Zhu, Z.L. Liu, Q.Z. Liu, Y.X. Zhang, Graphene oxide modified ZnO nanorods hybrid with high reusable photocatalytic activity under UV-LED irradiation. Mater. Chem. Phys. 143, 1410–1416 (2014)

    CAS  Google Scholar 

  9. K. Dai, L.H. Lu, Q. Liu, G.P. Zhu, Q.Z. Liu, Z.L. Liu, Graphene oxide capturing surface-fluorinated TiO2 nanosheets for advanced photocatalysis and the reveal of synergism reinforce mechanism. Dalton Trans. 43, 2202–2210 (2014)

    Article  CAS  Google Scholar 

  10. J. Zhang, Q. Wang, L.H. Wang, X.A. Li, W. Huang, Layer-controllable WS2-reduced graphene oxide hybrid nanosheets with high electrocatalytic activity for hydrogen evolution. Nanoscale 7, 10391–10397 (2015)

    Article  CAS  Google Scholar 

  11. Y.H. Zhao, J.Y. Zhao, T. Yang, J. Zhang, J.P. Yang, X.A. Li, Enhanced write-once optical storage capacity of Cu3N film by coupling with an Al2O3 protective layer. Ceram. Int. 42, 4486–4490 (2016)

    Article  CAS  Google Scholar 

  12. J.J. He, J.M. Pringle, Y.B. Cheng, Titanium carbide and titanium nitride-based nanocomposites as efficient catalysts for the Co2+/Co3+ redox couple in dye-sensitized solar cells. J. Phys. Chem. C. 118, 16818–16824 (2014)

    Article  CAS  Google Scholar 

  13. J.F. Zhang, J.L. Lv, K. Dai, Q. Liu, C.H. Liang, G.P. Zhu, Facile and green synthesis of novel porous g-C3N4/Ag3PO4 composite with enhanced visible light photocatalysis. Ceram. Int. 43, 1522–1529 (2017)

    Article  CAS  Google Scholar 

  14. K. Dai, J.L. Lv, L.H. Lu, C.H. Liang, L. Geng, G.P. Zhu, A facile fabrication of plasmonic g-C3N4/Ag2WO4/Ag ternary heterojunction visible-light photocatalyst. Mater. Chem. Phys. 177, 529–537 (2016)

    CAS  Google Scholar 

  15. K. Dai, D.P. Li, L. Geng, C.H. Liang, Q.C. Liu, Facile preparation of Bi2MoO6/multi-walled carbon nanotube nanocomposite for enhancing photocatalytic performance. Mater. Lett. 160, 124–127 (2015)

    Article  CAS  Google Scholar 

  16. J.L. Lv, K. Dai, J.F. Zhang, L. Geng, C.H. Liang, Q.C. Liu, G.P. Zhu, C. Chen, Facile synthesis of Z-scheme graphitic-C3N4/Bi2MoO6 nanocomposite for enhanced visible photocatalytic properties. Appl. Surf. Sci. 358, 377–384 (2015)

    Article  CAS  Google Scholar 

  17. Y. Hou, Z. Wen, S. Cui, X. Guo, J. Chen, Constructing 2D porous graphitic C3N4 nanosheets/nitrogen-doped graphene/layered MoS2 ternary nanojunction with enhanced photoelectrochemical activity. Adv. Mater. 25, 6291–6297 (2013)

    Article  CAS  Google Scholar 

  18. J.L. Lv, K. Dai, J.F. Zhang, Q. Liu, C.H. Liang, G.P. Zhu, Sonication assisted preparation of graphene oxide/graphitic-C3N4 nanosheet hybrid with reinforced photocurrent for photocatalyst applications. Dalton Trans. 43, 6295–6299 (2014)

    Article  Google Scholar 

  19. K. Dai, L.H. Lu, Q. Liu, G.P. Zhu, X.Q. Wei, J. Bai, L.L. Xuan, W. Heng, Facile constructing novel 2D porous g-C3N4/BiOBr hybrid with enhanced visible-light-driven photocatalytic activity. Sep. Purif. Technol. 178, 6–17 (2017)

    Article  Google Scholar 

  20. J.G. Yu, S.H. Wang, J.X. Low, W. Xiao, Enhanced photocatalytic performance of direct Z-scheme g-C3N4-TiO2 photocatalysts for the decomposition of formaldehyde in air. Phys. Chem. Chem. Phys. 15, 16883–16890 (2013)

    Article  CAS  Google Scholar 

  21. Y.J. Sun, W.D. Zhang, T. Xiong, Z.W. Zhao, F. Dong, R.Q. Wang, W.K. Ho, Growth of BiOBr nanosheets on C3N4 nanosheets to construct two-dimensional nanojunctions with enhanced photoreactivity for NO removal. J. Colloid Interf. Sci. 418, 317–323 (2014)

    Article  CAS  Google Scholar 

  22. J.S. Zhang, M.W. Zhang, C. Yang, X.C. Wang, Nanospherical carbon nitride frameworks with sharp edges accelerating charge collection and separation at a soft photocatalytic interface. Adv. Mater. 26, 4121–4126 (2014)

    Article  CAS  Google Scholar 

  23. F. Dong, Z.W. Zhao, T. Xiong, Z.L. Ni, W.D. Zhang, Y.J. Sun, W.K. Ho, In situ construction of g-C3N4/g-C3N4 metal-free heterojunction for enhanced visible-light photocatalysis. ACS Appl. Mater. Interfaces 5, 11392–11401 (2013)

    Article  CAS  Google Scholar 

  24. S.W. Cao, J.G. Yu, G-C3N4-based photocatalysts for hydrogen generation. J. Phys. Chem. Lett. 5, 2101–2107 (2014)

    Article  CAS  Google Scholar 

  25. H.J. Li, B.W. Sun, L. Sui, D.J. Qian, M. Chen, Preparation of water-dispersible porous g-C3N4 with improved photocatalytic activity by chemical oxidation. Phys. Chem. Chem. Phys. 17, 3309–3315 (2015)

    Article  CAS  Google Scholar 

  26. S. Tonda, S. Kumar, S. Kandula, V. Shanker, Fe-doped and -mediated graphitic carbon nitride nanosheets for enhanced photocatalytic performance under natural sunlight. J. Mater. Chem. A. 2, 6772–6780 (2014)

    Article  CAS  Google Scholar 

  27. K. Dai, L.H. Lu, C.H. Liang, G.P. Zhu, Q.Z. Liu, L. Geng, J.Q. He, A high efficient graphitic-C3N4/BiOI/graphene oxide ternary nanocomposite heterostructured photocatalyst with graphene oxide as electron transport buffer material. Dalton Trans. 44, 7903–7910 (2015)

    Article  CAS  Google Scholar 

  28. Z.Y. Zhang, J.D. Huang, Q. Yuan, B. Dong, Intercalated graphitic carbon nitride, a fascinating two-dimensional nanomaterial for an ultrasensitive humidity nanosensor. Nanoscale 6, 9250–9256 (2014)

    Article  CAS  Google Scholar 

  29. S.Z. Hu, F.Y. Li, Z.P. Fan, F. Wang, Y.F. Zhao, Z.B. Lv, Band gap-tunable potassium doped graphitic carbon nitride with enhanced mineralization ability. Dalton Trans. 44, 1084–1092 (2015)

    Article  CAS  Google Scholar 

  30. W.K. Ho, Z.Z. Zhang, W. Lin, S.P. Huang, X.W. Zhang, X.X. Wang, Y. Huang, Copolymerization with 2,4,6-triaminopyrimidine for the rolling-up the layer structure, tunable electronic properties, and photocatalysis of g-C3N4. ACS Appl. Mater. Interfaces 7, 5497–5505 (2015)

    Article  CAS  Google Scholar 

  31. S. Kumar, S. Tonda, B. Kumar, A. Baruah, V. Shanker, Synthesis of magnetically separable and recyclable g-C3N4–Fe3O4 hybrid nanocomposites with enhanced photocatalytic performance under visible-light irradiation. J. Phys. Chem. C. 117, 26135–26143 (2013)

    Article  CAS  Google Scholar 

  32. K. Li, S.M. Gao, Q.Y. Wang, H. Xu, Z.Y. Wang, B.B. Huang, Y. Dai, J. Lu, In-situ-reduced synthesis of Ti3+ self-doped TiO2/g-C3N4 heterojunctions with high photocatalytic performance under LED light irradiation. ACS Appl. Mater. Interfaces 7, 9023–9030 (2015)

    Article  CAS  Google Scholar 

  33. D.M. Chen, K.W. Wang, T.Z. Ren, H. Ding, Y.F. Zhu, Synthesis and characterization of the ZnO/mpgC3N4 heterojunction photocatalyst with enhanced visible light photoactivity. Dalton Trans. 43, 13105–13114 (2014)

    Article  CAS  Google Scholar 

  34. F.T. Li, Y.B. Xue, B. Li, Y.J. Hao, X.J. Wang, R.H. Liu, J. Zhao, Precipitation synthesis of mesoporous photoactive Al2O3 for constructing g-C3N4-based heterojunctions with enhanced photocatalytic activity. Ind. Eng. Chem. Res. 53, 19540–19549 (2014)

    CAS  Google Scholar 

  35. K. Takanabe, K. Kamata, X.C. Wang, M. Antonietti, J. Kubota, K. Domen, Photocatalytic hydrogen evolution on dye-sensitized mesoporous carbon nitride photocatalyst with magnesium phthalocyanine. Phys. Chem. Chem. Phys. 12, 13020–13025 (2010)

    Article  CAS  Google Scholar 

  36. J.J. Xue, S.S. Ma, Y.M. Zhou, Z.W. Zhang, M. He, Facile photochemical synthesis of Au/Pt/g-C3N4 with plasmon-enhanced photocatalytic activity for antibiotic degradation. ACS Appl. Mater. Interfaces 7, 9630–9637 (2015)

    Article  CAS  Google Scholar 

  37. Y.F. Zhang, F. Mao, H.J. Yan, K.W. Liu, H.M. Cao, J.G. Wu, D.Q. Xiao, A polymer-metal-polymer-metal heterostructure for enhanced photocatalytic hydrogen production. J. Mater. Chem. A. 3, 109–115 (2015)

    Article  CAS  Google Scholar 

  38. Y.M. He, L.H. Zhang, B.T. Teng, M.H. Fan, New application of z-scheme Ag3PO4/g-C3N4 composite in converting CO2 to fuel. Environ. Sci. Technol. 49, 649–656 (2015)

    Article  CAS  Google Scholar 

  39. J. Zhang, J.G. Yu, M. Jaroniec, J.R. Gong, Noble metal-free reduced graphene oxide-ZnxCd1–xS nanocomposite with enhanced solar photocatalytic H2-production performance. Nano Lett. 12, 4584–4589 (2012)

    Article  CAS  Google Scholar 

  40. H.Y. Jin, J. Wang, D.F. Su, Z.Z. Wei, Z.F. Pang, Y. Wang, In situ cobalt-cobalt oxide/N-doped carbon hybrids as superior bifunctional electrocatalysts for hydrogen and oxygen evolution. J. Am. Chem. Soc. 137, 2688–2694 (2015)

    Article  CAS  Google Scholar 

  41. L.G. Kong, Y.M. Dong, P.P. Jiang, G.L. Wang, H.Z. Zhang, N. Zhao, Light-assisted rapid preparation of a Ni/g-C3N4 magnetic composite for robust photocatalytic H2 evolution from water. J. Mater. Chem. A. 4, 9998–10007 (2016)

    Article  CAS  Google Scholar 

  42. R.B.N. Baig, S. Verma, R.S. Varma, M.N. Nadagouda, Magnetic Fe@g-C3N4, a photoactive catalyst for the hydrogenation of alkenes and alkynes. ACS Sustain. Chem. Eng. 4, 1661–1664 (2016)

    Article  CAS  Google Scholar 

  43. S.P. Wang, C.J. Li, T. Wang, P. Zhang, A. Li, J.L. Gong, Controllable synthesis of nanotube-type graphitic C3N4 and their visible-light photocatalytic and fluorescent properties. J. Mater. Chem. A. 2, 2885–2890 (2014)

    Article  CAS  Google Scholar 

  44. Y.W. Yuan, L.L. Zhang, J. Xing, MIB Utama, X. Lu, K.Z. Du, Y.M. Li, X. Hu, S.J. Wang, A. Genç, R. Dunin-Borkowski, J. Arbiol, Q.H. Xiong, High-yield synthesis and optical properties of g-C3N4. Nanoscale 7, 12343–12350 (2015)

    Article  CAS  Google Scholar 

  45. N. Zhang, M.Q. Yang, S.Q. Liu, Y.G. Sun, Y.J. Xu, Waltzing with the versatile platform of graphene to synthesize composite photocatalysts. Chem. Rev. 115, 10307–10377 (2015)

    Article  CAS  Google Scholar 

  46. V.W. Lau, M.B. Mesch, V. Duppel, V. Blum, J. Senker, B.V. Lotsch, Low-molecular-weight carbon nitrides for solar hydrogen evolution. J. Am. Chem. Soc. 137, 1064–1072 (2015)

    Article  CAS  Google Scholar 

  47. S.W. Zhang, J.X. Li, M.Y. Zeng, G.X. Zhao, J.Z. Xu, W.P. Hu, X.K. Wang, In situ synthesis of water-soluble magnetic graphitic carbon nitride photocatalyst and its synergistic catalytic performance. ACS Appl. Mater. Interfaces 5, 12735–12743 (2013)

    Article  CAS  Google Scholar 

  48. L. Shi, L. Liang, F.X. Wang, J. Ma, J.M. Sun, Polycondensation of guanidine hydrochloride into a graphitic carbon nitride semiconductor with a large surface area as a visible light photocatalyst. Catal. Sci. Technol. 4, 3235–3243 (2014)

    Article  CAS  Google Scholar 

  49. C.H. Gong, J.W. Zhang, X.F. Zhang, L.G. Yu, P.Y. Zhang, Z.S. Wu, Z.J. Zhang, Strategy for ultrafine Ni fibers and investigation of the electromagnetic characteristics. J. Phys. Chem. C. 114, 10101–10107 (2010)

    Article  CAS  Google Scholar 

  50. B. Busupalli, K. Date, S. Datar, B.L.V. Prasad, Preparation of Ni3S2 and Ni3S2-Ni nanosheets via solution based processes. Cryst. Growth. Des. 15, 2584–2588 (2015)

    Article  CAS  Google Scholar 

  51. X.S. Rong, F.X. Qiu, J. Yan, H. Zhao, X.L. Zhu, D.Y. Yang, Coupling with a narrow-band-gap semiconductor for enhancement of visible-light photocatalytic activity: preparation of Bi2S3/g-C3N4 and application for degradation of RhB. RSC Adv. 5, 24944–24952 (2015)

    Article  CAS  Google Scholar 

  52. H.W. Kang, S.N. Lim, D. Song, S.B. Park, Organic-inorganic composite of g-C3N4-SrTiO3:Rh photocatalyst for improved H2 evolution under visible light irradiation. Int. J. Hydrog. Energy 37, 11602–11610 (2012)

    Article  CAS  Google Scholar 

  53. S.C. Yan, Z.S. Li, Z.G. Zou, Photodegradation performance of g-C3N4 fabricated by directly heating melamine. Langmuir 25, 10397–10401 (2009)

    Article  CAS  Google Scholar 

  54. Y. Zheng, J. Liu, J. Liang, M. Jaroniecc, S.Z. Qiao, Graphitic carbon nitride materials: controllable synthesis and applications in fuel cells and photocatalysis. Energy Environ. Sci. 5, 6717–6731 (2012)

    Article  CAS  Google Scholar 

  55. X.D. Zhang, X. Xie, H. Wang, J.J. Zhang, B.C. Pan, Y. Xie, Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. J. Am. Chem. Soc. 135, 18–21 (2013)

    Article  CAS  Google Scholar 

  56. L.M. Sun, Y. Qi, C.J. Jia, Z. Jin, W.L. Fan, Enhanced visible-light photocatalytic activity of g-C3N4/Zn2GeO4 heterojunctions with effective interfaces based on band match. Nanoscale 6, 2649–2659 (2014)

    Article  CAS  Google Scholar 

  57. J. Xu, Y.J. Wang, Y.F. Zhu, Nanoporous graphitic carbon nitride with enhanced photocatalytic performance. Langmuir 29, 10566–10572 (2013)

    Article  CAS  Google Scholar 

  58. T.H. Gardner, J.J. Spivey, E.L. Kugler, A. Campos, J.C. Hissam, A.D. Roy, Structural characterization of Ni-substituted hexaaluminate catalysts using EXAFS, XANES, XPS, XRD, and TPR. J. Phys. Chem. C. 114, 7888–7894 (2010)

    Article  CAS  Google Scholar 

  59. C. Berrı´os, J.F. Marco, C. Gutie´rrez, M.S. Ureta-Zan˜ artu, Study by XPS and UV-Visible and DRIFT spectroscopies of electropolymerized films of substituted Ni(II)-p-phenylporphyrins and -phthalocyanines. J. Phys. Chem. B. 112, 12644–12649 (2008)

    Article  Google Scholar 

  60. M.M. Natile, A. Glisenti, Surface reactivity of NiO: interaction with methanol. Chem. Mater. 14, 4895–4903 (2002)

    Article  CAS  Google Scholar 

  61. Y.Y. Tong, C.D. Gu, J.L. Zhang, M.L. Huang, H. Tang, X.L. Wang, J.P. Tu, Three-dimensional astrocyte-network Ni-P-O compound with superior electrocatalytic activity and stability for methanol oxidation in alkaline environments. J. Mater. Chem. A. 3, 4669–4678 (2015)

    Article  CAS  Google Scholar 

  62. J.R. Ran, T.Y. Ma, G.P. Gao, X.W. Du, S.Z. Qiao, Porous P-doped graphitic carbon nitride nanosheets for synergistically enhanced visible-light photocatalytic H2 production. Energy Environ. Sci. 8, 3708–3717 (2015)

    Article  CAS  Google Scholar 

  63. J. Hong, S. Yin, Y. Pan, J. Han, T. Zhou, R. Xu, Porous carbon nitride nanosheets for enhanced photocatalytic activities. Nanoscale 6, 14984–14990 (2014)

    Article  CAS  Google Scholar 

  64. Q. Han, B. Wang, J. Gao, Z.H. Cheng, Y. Zhao, Z.P. Zhang, L.T. Qu, Atomically thin mesoporous nanomesh of graphitic C3N4 for high-efficiency photocatalytic hydrogen evolution. ACS Nano 10, 2745–2751 (2016)

    Article  CAS  Google Scholar 

  65. F. Dong, Y.J. Sun, L.W. Wu, M. Fu, Z.B. Wu, Facile transformation of low cost thiourea into nitrogen-rich graphitic carbon nitride nanocatalyst with high visible light photocatalytic performance. Catal. Sci. Technol. 2, 1332–1335 (2012)

    Article  CAS  Google Scholar 

  66. X.F. Yang, Z.P. Chen, J.S. Xu, H. Tang, K.M. Chen, Y. Jiang, Tuning the morphology of g-C3N4 for improvement of Z-scheme photocatalytic water oxidation. ACS Appl. Mater. Interfaces 7, 15285–15293 (2015)

    Article  CAS  Google Scholar 

  67. F. Dong, M.Y. Ou, Y.K. Jiang, S. Guo, Z.B. Wu, Efficient and durable visible light photocatalytic performance of porous carbon nitride nanosheets for air purification. Ind. Eng. Chem. Res. 53, 2318–2330 (2014)

    Article  CAS  Google Scholar 

  68. N. Tian, H.W. Huang, Y. He, Y.X. Guo, T.R. Zhang, Y.H. Zhang, Mediator-free direct Z-scheme photocatalytic system: BiVO4/g-C3N4 organic–inorganic hybrid photocatalyst with highly efficient visible-lightinduced photocatalytic activity. Dalton Trans. 44, 4297–4307 (2015)

    Article  CAS  Google Scholar 

  69. H.Q. Sun, G.L. Zhou, Y.X. Wang, A. Suvorova, S.B. Wang, A new metal-free carbon hybrid for enhanced photocatalysis. ACS Appl. Mater. Interfaces 6, 16745–16754 (2014)

    Article  CAS  Google Scholar 

  70. S.M. Yin, J.Y. Han, T.H. Zhou, R. Xu, Recent progress in g-C3N4 based low cost photocatalytic system: activity enhancement and emerging applications. Catal. Sci. Technol. 5, 5048–5061 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support from the National Basic Research Program of China (2012CB933301, 2014CB648300), the Key Project of National High Technology Research of China (2011AA050526), the Ministry of Education of China (No. IRT1148), the National Synergetic Innovation Center for Advanced Materials (SICAM), the Natural Science Foundation of Jiangsu Province, China (BM2012010), the Research Innovation Program for College Graduates of Jiangsu Province (No. SJLX15-0388), the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD, YX03001), NUPTSF (Grant Nos. NY214181, NY215077, NY213103), and the National Natural Science Foundation of China (51372119, 51572126, 61136003, 61402240, 51602161, 81273409).

Author Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Zhang or Xing’ao Li.

Ethics declarations

Conflict of interest

The authors declare no conflict financial interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Zhang, J., Mao, W. et al. Efficient Organic Dyes Photodegradation Catalyzed by Nickel-Species Loaded Graphitic Carbon Nitride. J Inorg Organomet Polym 27, 1177–1189 (2017). https://doi.org/10.1007/s10904-017-0564-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-017-0564-2

Keywords

Navigation