Skip to main content
Log in

Dependence of Catalytic Dynamics on Structural and Operational Parameters of Enzymatic Electrodes Based on Nano-composite

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Dependences of structural parameters and operational conditions on enzymatic catalysis of substrates (glucose and oxygen) for basal electrodes over-coated by composite consisting of nano-gold particle and polymer, were investigated systematically by the means of electrochemistry and spectrometry. Rate constants of steps involved in the whole catalytic cycle were estimated under the same dimension and were compared to confirm the limiting factor in the whole catalytic cycle. Results from experiments indicated that nano-gold particle surface anchored with aromatic ring as conductive support played the important role in achieving direct electron transfer between cofactors in redox protein molecules and electrical wired matrix. Complexations between components of nano-composite and redox sites within incorporated enzyme molecules acted as the paradoxical role in promoting the catalytic efficiency in the long term. Electrochemical conversion of substrates into product was identified to be the rate limiting step in the whole catalytic cycle for both enzyme based electrodes. Other parameters such as enzyme loading amounts in matrix, size of nano-particle and proportion of component in nano-composite only posed impact on magnitude of catalytic effect rather than the mechanism of catalysis.

Graphical Abstract

Transformation of substrate into product was ascribed to the limiting step in the whole catalysis for enzyme-based electrodes which resulted from great impact of interactions between enzyme carrier and redox protein on configuration of cofactors in enzyme molecules and binding ability to substrate for proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Y.J. Zhang, M. Chu, L. Yang, Y.M. Tan, W.F. Deng, M. Ma, X.L. Su, Q.J. Xie, ACS Appl. Mater. Interfaces 6, 12808 (2014)

    Article  CAS  Google Scholar 

  2. A. Gutirrez, J. Rencoret, D. Ibarra, S. Molina, S. Camarero, J. Romero, J.C. Del Ro, A.T. Martinez, Environ. Sci. Technol. 41, 4124 (2007)

    Article  Google Scholar 

  3. Q. Xing, S.R. Eadula, Y.M. Lvov, Biomacromolecules 8, 1987 (2007)

    Article  CAS  Google Scholar 

  4. M. Bagheri, H. Rodriguez, R.P. Swatloski, S.K. Spear, D.T. Daly, R.D. Rogers, Biomacromolecules 9, 381 (2008)

    Article  CAS  Google Scholar 

  5. S. Kurniawati, J.A. Nicell, Enzyme Microb. Technol. 41, 353 (2007)

    Article  CAS  Google Scholar 

  6. G. Hublik, F. Schinner, Enzyme Microb. Technol. 27, 330 (2000)

    Article  CAS  Google Scholar 

  7. Y. Liu, X.H. Qu, H.W. Guo, H.J. Chen, B.F. Liu, S.J. Dong, Biosens. Bioelectron. 21, 2195 (2006)

    Article  CAS  Google Scholar 

  8. C. Gutierrez-Sanchez, W.Z. Jia, Y. Beyl, M. Pita, W. Schuhmann, A.L. De Lacey, L. Stoica, Electrochim. Acta. 82, 218 (2012)

    Article  CAS  Google Scholar 

  9. A. Ressine, C. Vaz-Dominguez, V.M. Fernandez, A.L. De Lacey, T. Laurell, T. Ruzgas, S. Shleev, Biosens. Bioelectron. 25, 1001 (2010)

    Article  CAS  Google Scholar 

  10. Y. Yang, W.S. Huo, Z. Zhou, Q. Zhang, H. Zeng, Chin. J. Inorg. Chem. 32, 2117 (2016) (in Chinese)

    CAS  Google Scholar 

  11. T. Kuwahara, K. Nakata, M. Kondo, M. Shimomura, Synth. Met. 214, 30 (2016)

    Article  CAS  Google Scholar 

  12. C. Lau, E.R. Adkins, R.P. Ramasamy, H.R. Luckarift, G.R. Johnson, P. Atanassov, Adv. Energy Mater. 2, 62 (2012)

    Article  Google Scholar 

  13. M. Rasmussen, S. Abdellaoui, S.D. Minteer, Biosens. Bioelectron. 76, 91 (2016)

    Article  CAS  Google Scholar 

  14. M. Tominaga, A. Sasaki, M. Togami, Electrochemistry 84, 315 (2016)

    Article  CAS  Google Scholar 

  15. N. Mano, L. Edembe, Biosens. Bioelectron. 50, 478 (2013)

    Article  CAS  Google Scholar 

  16. E. Katz, O. Lioubashevski, I. Willner, J. Am. Chem. Soc. 127, 3979 (2005)

    Article  CAS  Google Scholar 

  17. S. Clot, C. Gutierrez-Sanchez, S. Shleev, A.L. De Lacey, M. Pita, Electrochem. Commun. 18, 37 (2012)

    Article  CAS  Google Scholar 

  18. C. Traunsteiner, S. Sek, V. Huber, C. Valero-Vidal, J. Kunze-Liebhauser, Electrochim. Acta. 213, 761 (2016)

    Article  CAS  Google Scholar 

  19. M. Karaskiewicz, D. Majdecka, A. Wieckowska, J.F. Biernat, J. Rogalski, R. Bilewicz, Electrochim. Acta. 126, 132 (2014)

    Article  CAS  Google Scholar 

  20. Q. Qian, L. Su, P. Yu, H.J. Cheng, Y.Q. Lin, X.Y. Jin, L.Q. Mao, J. Phys. Chem. B 116, 5185 (2012)

    Article  CAS  Google Scholar 

  21. S.J. Guo, H. Li, J. Liu, Y.M. Yang, W.Q. Kong, S. Qiao, H. Huang, Y. Liu, Z.H. Kang, ACS Appl. Mater. Interfaces 7, 20937 (2015)

    Article  CAS  Google Scholar 

  22. H.J. Qiu, C.X. Xu, X.R. Huang, Y. Ding, Y.B. Qu, P.J. Gao, J. Phys. Chem. C 112, 14781 (2008)

    Article  CAS  Google Scholar 

  23. M.A. Rahman, H.B. Noh, Y.B. Shim, Anal. Chem. 80, 8020 (2008)

    Article  CAS  Google Scholar 

  24. H. Zeng, S.X. Zhao, L.X. Gong, G.J. Zhang, Chin. J. Appl. Chem. 28, 326 (2011) (in Chinese)

    CAS  Google Scholar 

  25. Y. Yang, H. Zeng, Q. Zhang, X. Bai, C. Liu, Y.H. Zhang, Chem. Phys. Lett. 658, 259 (2016)

    Article  CAS  Google Scholar 

  26. W.S. Huo, H. Zeng, Y. Yang, Y.H. Zhang, Chem. Phys. Lett. 671, 15 (2017)

    Article  CAS  Google Scholar 

  27. E.C. Hao, T.Q. Lian, Chem. Mater. 12, 3392 (2000)

    Article  CAS  Google Scholar 

  28. J. Huang, J.Y. Zhou, H.Y. Xiao, S.Y. Long, J.T. Wang, Acta. Chim. Sin. 63, 1343 (2005) (in Chinese)

    CAS  Google Scholar 

  29. H.Y. Zhao, H.M. Zhou, J.X. Zhang, W. Zheng, Y.F. Zheng, Biosens. Bioelectron. 25, 463 (2009)

    Article  CAS  Google Scholar 

  30. I. Ivanov, T. Vidakovic-Koch, K. Sundmacher, Energies 3, 803 (2010)

    Article  CAS  Google Scholar 

  31. H. Zheng, J.B. Hu, Q.L. Li, Acta. Chim. Sin. 64, 806 (2006) (in Chinese)

    CAS  Google Scholar 

  32. I. Willner, V. Heleg-Shabtai, R. Blonder, E. Katz, G.L. Tao, A.F. Bckmann, A. Heller, J. Am. Chem. Soc. 118, 10321 (1996)

    Article  CAS  Google Scholar 

  33. J. Urban, A. Zloczewska, W. Stryczniewicz, M. Jonsson-Niedziolka, Electrochem. Commun. 34, 94 (2013)

    Article  CAS  Google Scholar 

  34. Y. Umasankar, D.B. Brooks, B. Brown, Z.G. Zhou, R.P. Ramasamy, Adv. Energy. Mater. 4, 1 (2014)

    Article  Google Scholar 

  35. H.J. Qiu, C.X. Xu, X.R. Huang, Y. Ding, Y.B. Qu, P.J. Gao, J. Phys. Chem. C 113, 2521 (2009)

    Article  CAS  Google Scholar 

  36. D.S. Jiang, S.Y. Long, J. Huang, H.Y. Xiao, J.Y. Zhou, Biochem. Eng. J. 25, 15 (2005)

    Article  Google Scholar 

  37. N. Mano, H.H. Kim, Y.C. Zhang, A. Heller, J. Am. Chem. Soc. 124, 6480 (2002)

    Article  CAS  Google Scholar 

  38. W.E. Farneth, B.A. Diner, T.D. Gierke, M.B. D’Amore, J. Electroanal. Chem. 581, 190 (2005)

    Article  CAS  Google Scholar 

  39. I. Willner, Y.M. Yan, B. Willner, R. Tel-Vered, Fuel Cells 9, 7 (2009)

    Article  CAS  Google Scholar 

  40. E. Katz, I. Willner, A.B. Kotlyar, J. Electroanal. Chem. 479, 64 (1999)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The study was financially supported by the National Natural Science Foundation of China (No. 31560249), scientific research plan of 2013 annual colleges and universities in Xin-Jiang autonomous region-Young teacher cultivation project (No. XJEDU2013S29), Science and Technology Innovation Funding Project of Graduate Students in Xinjiang Normal University (XSY201502009) and PH D scientific initiate funding project of Xin-Jiang normal university (No. XJNUBS1228).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han Zeng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, H., Yang, Y., Zhao, S.X. et al. Dependence of Catalytic Dynamics on Structural and Operational Parameters of Enzymatic Electrodes Based on Nano-composite. J Inorg Organomet Polym 27, 1162–1176 (2017). https://doi.org/10.1007/s10904-017-0563-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-017-0563-3

Keywords

Navigation