Binding of Cobaltocenium-Containing Polyelectrolytes with Anionic Probes

  • Parasmani Pageni
  • Mohammad Pabel Kabir
  • Peng Yang
  • Chuanbing Tang
Article
  • 257 Downloads

Abstract

Cationic cobaltocenium-containing polyelectrolytes have a unique ability to form ionic complex with various anionic species. We carried out two sets of model study to compare the relative binding strength of a cobaltocenium-containing polyelectrolyte. First, the nature and relative strength of intermolecular interaction between cobaltocenium-containing polyelectrolytes and different anionic probes were investigated by spectroscopic methods. A dye-displacement method was used to monitor absorbance and fluorescence emissions. Second, the binding strength of this cobaltocenium-containing polyelectrolyte was compared with a classical quaternary ammonium polymer. Formation of polyelectrolyte complex between the cobaltocenium-containing polyelectrolyte and a common anionic polyelectrolyte at various concentrations was examined by optical absorption and light scattering.

Graphical Abstract

Keywords

Metallopolymers Polyelectrolytes Cobaltocenium Ion-binding Polyelectrolyte complex 

Notes

Acknowledgements

The support from National Institutes of Health (R01AI120987) is acknowledged.

Compliance with Ethical Standards

Conflict of interest

The authors declare no competing financial interest.

Supplementary material

10904_2017_561_MOESM1_ESM.pdf (407 kb)
Supplementary material 1 (PDF 407 KB)

References

  1. 1.
    J. Weiss, P. Takhistov, D.J. McClements, J. Food Sci. 71, R107 (2006)CrossRefGoogle Scholar
  2. 2.
    D. Guzey, D.J. McClements, Adv. Colloid Interface Sci. 128, 227 (2006)CrossRefGoogle Scholar
  3. 3.
    I. Korus, K. Loska, Desalination 247, 390 (2009)CrossRefGoogle Scholar
  4. 4.
    C.-W. Li, C.-H. Cheng, K.-H. Choo, W.-S. Yen, Chemosphere 72, 630 (2008)CrossRefGoogle Scholar
  5. 5.
    B. Bolto, J. Gregory, Water Res. 41, 2301 (2007)CrossRefGoogle Scholar
  6. 6.
    L.A. Chen, R.G. Carbonell, G.A. Serad, Water Res. 34, 510 (2000)CrossRefGoogle Scholar
  7. 7.
    B.R. Einsla, Y.S. Kim, M.A. Hickner, Y.-T. Hong, M.L. Hill, B.S. Pivovar, J.E. McGrath, J. Membr. Sci. 255, 141 (2005)CrossRefGoogle Scholar
  8. 8.
    S.P. Jiang, Z. Liu, Z.Q. Tian, Adv. Mater. 18, 1068 (2006)CrossRefGoogle Scholar
  9. 9.
    B. Smitha, S. Sridhar, A.A. Khan, Macromolecules 37, 2233 (2004)CrossRefGoogle Scholar
  10. 10.
    Y. Wan, B. Peppley, K.A.M. Creber, V.T. Bui, E. Halliop, J. Power Sources 185, 183 (2008)CrossRefGoogle Scholar
  11. 11.
    C. Boura, P. Menu, E. Payan, C. Picart, J.C. Voegel, S. Muller, J.F. Stoltz, Biomaterials 24, 3521 (2003)CrossRefGoogle Scholar
  12. 12.
    P.-H. Chua, K.-G. Neoh, E.-T. Kang, W. Wang, Biomaterials 29, 1412 (2008)CrossRefGoogle Scholar
  13. 13.
    G. Kumar, Y.C. Wang, C. Co, C.-C. Ho, Langmuir 19, 10550 (2003)CrossRefGoogle Scholar
  14. 14.
    C. Vodouhê, E.L. Guen, J.M. Garza, G. Francius, C. Déjugnat, J. Ogier, P. Schaaf, J.-C. Voegel, P. Lavalle, Biomaterials 27, 4149 (2006)CrossRefGoogle Scholar
  15. 15.
    J. García-Serrano, U. Pal, A.M. Herrera, P. Salas, C. Ángeles-Chávez, Chem. Mater. 20, 5146 (2008)CrossRefGoogle Scholar
  16. 16.
    T.K. Sau, C.J. Murphy, J. Am. Chem. Soc. 126, 8648 (2004)CrossRefGoogle Scholar
  17. 17.
    T.K. Sau, A.L. Rogach, Adv. Mater. 22, 1781 (2010)CrossRefGoogle Scholar
  18. 18.
    A. Rabiee, J. Vinyl Add. Technol. 16, 111 (2010)Google Scholar
  19. 19.
    A.M. Herrera González, M. Caldera Villalobos, J. García-Serrano and A.A. Peláez Cid, Des. Monomers Polym. 19, 330 (2016)CrossRefGoogle Scholar
  20. 20.
    A. Laschewsky, Curr. Opin. Colloid Interface Sci. 17, 56 (2012)CrossRefGoogle Scholar
  21. 21.
    F. Zhang, Y. Zhou, Y. Chen, Z. Shi, Y. Tang, T. Lu, J. Colloid Interface Sci. 351, 421 (2010)CrossRefGoogle Scholar
  22. 22.
    A.V. Dobrynin, M. Rubinstein, Prog. Polym. Sci. 30, 1049 (2005)CrossRefGoogle Scholar
  23. 23.
    L. Ren, C.G. Hardy, C. Tang, J. Am. Chem. Soc. 132, 8874 (2010)CrossRefGoogle Scholar
  24. 24.
    Y. Yan, P. Pageni, M.P. Kabir, C. Tang, Synlett 27, 984 (2016)CrossRefGoogle Scholar
  25. 25.
    C.G. Hardy, L. Ren, T.C. Tamboue and C. Tang, J. Polym. Sci. Part A 49, 1409 (2011)CrossRefGoogle Scholar
  26. 26.
    W. Kaminsky, J. Polym. Sci. Part A 42, 3911 (2004)CrossRefGoogle Scholar
  27. 27.
    A.S. Abd-El-Aziz, I. Manners, Frontiers in Transition Metal-Containing Polymers, (Wiley, Hoboken, 2007)CrossRefGoogle Scholar
  28. 28.
    G.R. Whittell, M.D. Hager, U.S. Schubert, I. Manners, Nat. Mater. 10, 176 (2011)CrossRefGoogle Scholar
  29. 29.
    D. Astruc, Eur. J. Inorg. Chem. 2017, 6 (2017)CrossRefGoogle Scholar
  30. 30.
    D.A. Foucher, B.Z. Tang, I. Manners, J. Am. Chem. Soc. 114, 6246 (1992)CrossRefGoogle Scholar
  31. 31.
    D. Astruc, Nat. Chem. 4, 255 (2012)CrossRefGoogle Scholar
  32. 32.
    E.W. Neuse, J. Inorg. Organomet. Polym. Mater. 15, 3 (2005)CrossRefGoogle Scholar
  33. 33.
    A.I. Mufula, B. Aderibigbe, E.W. Neuse, H.E. Mukaya, J. Inorg. Organomet. Polym. Mater. 22, 423 (2012)CrossRefGoogle Scholar
  34. 34.
    E.W. Neuse, M.G. Meirim, D.D. N” Da and G. Caldwell. J. Inorg. Organomet. Polym. 9, 221 (1999)CrossRefGoogle Scholar
  35. 35.
    J.E. Sheats, M.D. Rausch, J. Org. Chem. 35, 3245 (1970)CrossRefGoogle Scholar
  36. 36.
    C. Pittman Jr., O. Ayers, S. McManus, J. Sheats, C. Whitten, Macromolecules 4, 360 (1971)CrossRefGoogle Scholar
  37. 37.
    C.E. Carraher, G.F. Peterson, J.E. Sheats, T. Kirsch, Macromol. Chem. Phys. 175, 3089 (1974)CrossRefGoogle Scholar
  38. 38.
    C. Pittman, O. Ayers, B. Suryanarayanan, S. McManus and J. Sheats, Die Makromol. Chem. 175, 1427 (1974)CrossRefGoogle Scholar
  39. 39.
    U.F. Mayer, J.B. Gilroy, D. O’Hare, I. Manners, J. Am. Chem. Soc. 131, 10382 (2009)CrossRefGoogle Scholar
  40. 40.
    J.B. Gilroy, S.K. Patra, J.M. Mitchels, M.A. Winnik, I. Manners, Angew. Chem. Int. Ed. 50, 5851 (2011)CrossRefGoogle Scholar
  41. 41.
    D. Astruc, C. Ornelas, J. Ruiz, Acc. Chem. Res. 41, 841 (2008)CrossRefGoogle Scholar
  42. 42.
    C.M. Casado, B. González, I. Cuadrado, B. Alonso, M. Morán, J. Losada, Angew. Chem. 112, 2219 (2000)CrossRefGoogle Scholar
  43. 43.
    C. Ornelas, J. Ruiz, D. Astruc, Organometallics 28, 2716 (2009)CrossRefGoogle Scholar
  44. 44.
    K. Takada, D.J. Díaz, H.D. Abruña, I. Cuadrado, B. González, C.M. Casado, B. Alonso, M. Morán and J. Losada, Chemistry 7, 1109 (2001)CrossRefGoogle Scholar
  45. 45.
    A. Maurer, H.B. Kraatz, N. Metzler-Nolte, Eur. J. Inorg. Chem. 2005, 3207 (2005)CrossRefGoogle Scholar
  46. 46.
    A. Gross, D. Habig, N. Metzler-Nolte, ChemBioChem 14, 2472 (2013)CrossRefGoogle Scholar
  47. 47.
    Y. Yan, J. Zhang, Y. Qiao and C. Tang, Macromol. Rapid Commun. 35, 254 (2014)CrossRefGoogle Scholar
  48. 48.
    S. Vanicek, H. Kopacka, K. Wurst, T. Müller, H. Schottenberger, B. Bildstein, Organometallics 33, 1152 (2014)CrossRefGoogle Scholar
  49. 49.
    K. Matyjaszewski, B.S. Sumerlin, N.V. Tsarevsky (eds.), Progress in Controlled Radical Polymerization: Mechanisms and Techniques, (American Chemical Society, Washington, 2012)Google Scholar
  50. 50.
    J. Zhang, L. Ren, C.G. Hardy, C. Tang, Macromolecules 45, 6857 (2012)CrossRefGoogle Scholar
  51. 51.
    J. Zhang, J. Yan, P. Pageni, Y. Yan, A. Wirth, Y.-P. Chen, Y. Qiao, Q. Wang, A.W. Decho, C. Tang, Sci. Rep. 5, 11914 (2015)CrossRefGoogle Scholar
  52. 52.
    J. Zhang, Y. Yan, M.W. Chance, J. Chen, J. Hayat, S. Ma, C. Tang, Angew. Chem. Int. Ed. 52, 13387 (2013)CrossRefGoogle Scholar
  53. 53.
    J. Zhang, Y. Yan, J. Chen, W.M. Chance, J. Hayat, Z. Gai, C. Tang, Chem. Mater. 26, 3185 (2014)CrossRefGoogle Scholar
  54. 54.
    J. Zhang, Y.P. Chen, K.P. Miller, M.S. Ganewatta, M. Bam, Y. Yan, M. Nagarkatti, A.W. Decho, C. Tang, J. Am. Chem. Soc. 136, 4873 (2014)CrossRefGoogle Scholar
  55. 55.
    A. M. Jolly and M. Bonizzoni, Supramol. Chem. 27, 151 (2015)CrossRefGoogle Scholar
  56. 56.
    A.M. Mallet, A.B. Davis, D.R. Davis, J. Panella, K.J. Wallace, M. Bonizzoni, Chem. Commun. 51, 16948 (2015)CrossRefGoogle Scholar
  57. 57.
    A.M. Jolly, M. Bonizzoni, Macromolecules 47, 6281 (2014)CrossRefGoogle Scholar
  58. 58.
    S. Chen, M. Liu, S. Jin and Y. Chen, Polym. Int. 56, 1305 (2007)CrossRefGoogle Scholar
  59. 59.
    S. Agarwal, Y. Zhang, S. Maji and A. Greiner, Mater. Today 15, 388 (2012)CrossRefGoogle Scholar
  60. 60.
    J. Niskanen, C. Wu, M. Ostrowski, G.G. Fuller, S. Hietala, H. Tenhu, Macromolecules 46, 2331 (2013)CrossRefGoogle Scholar
  61. 61.
    M. Thomas, M. Gajda, C. Amiri Naini, S. Franzka, M. Ulbricht, N. Hartmann, Langmuir 31, 13426 (2015)CrossRefGoogle Scholar
  62. 62.
    W. Xu, I. Choi, F.A. Plamper, C.V. Synatschke, A.H.E. Müller, Y.B. Melnichenko, V.V. Tsukruk, Macromolecules 47, 2112 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Parasmani Pageni
    • 1
  • Mohammad Pabel Kabir
    • 1
  • Peng Yang
    • 1
  • Chuanbing Tang
    • 1
  1. 1.Department of Chemistry and BiochemistryUniversity of South CarolinaColumbiaUSA

Personalised recommendations