Advertisement

Temperature-Dependant Assemblies of Cu(II) Coordination Polymers and In Situ Ligand Reaction Based on 2,2′-Bipyridine-3,3′,6,6′-Tetracarboxylic acid

  • Yifan Kang
  • Xiqiang Liang
  • Meng Jin
  • Yuanfeng Li
  • Junqi Cao
  • Ruiting Sun
  • Xin Zheng
  • Meijin Lu
Article
  • 107 Downloads

Abstract

Three Cu(II) coordination polymers (CPs), namely, Cu(hbpdc)0.5(H2O)2 (1), [Cu2(hbpdc)(H2O)2]n (2), {[Cu3(hbpdc)(OH)2(H2O)]·H2O}n (3) (H4hbpdc = 3,3′-dihydroxy-2,2′-bipyridine-6,6′-dicarboxylic acid) have been obtained based on 2,2′-bipyridine-3,3′,6,6′-tetracarboxylic acid ligand (H4bptc) under hydro(solvo)thermal condition, and interestingly, the H4hbpdc ligand is in situ generated from H4bptc ligand during the synthetic process owing to the high temperature and pressure of the reaction system. Among the three complexes, 1 displays a discrete dinuclear copper building block, 2 possesses a 2D sheet, while 3 exhibits a porous 3D structure, and there exist Cu(II) centers in 3 showing an unprecedented one-capped trigonal prismatic coordination geometry. Structural comparisons indicate that the high reaction temperature is crucial factor for the in situ ligand reaction, and the solvent system and pH value play important roles in the coordination modes of H4nbtc ligand to produce various dimensional coordination polymers.

Keywords

Coordination polymer In situ ligand reaction Coordination mode Structural diversity 

Notes

Acknowledgements

The work was supported by the Natural Science Foundation of Shaanxi Province, China (No. 2016JQ2041), the Natural Scientific Research Foundation of Shaanxi Provincial Education Office of China (No. 16JK1084) and the Foundation for Young Scholars of Shaanxi University of Science & Technology (No. 126021535).

Supplementary material

10904_2017_556_MOESM1_ESM.doc (378 kb)
Supplementary material 1 (DOC 378 KB)

References

  1. 1.
    G.X. Wen, Y.P. Wu, W.W. Dong, J. Zhao, D.S. Li, J. Zhang, Inorg. Chem. 55, 10114 (2016)CrossRefGoogle Scholar
  2. 2.
    D.S. Li, P. Zhang, J. Zhao, Z.F. Fang, M. Du, K. Zou, Y.Q. Mu, Cryst. Growth Des. 12, 1697 (2012)CrossRefGoogle Scholar
  3. 3.
    D.S. Li, Y.P. Wu, J. Zhao, J. Zhang, J.Y. Lu, Coord. Chem. Rev. 41, 1029 (2002)Google Scholar
  4. 4.
    O.R. Evans, W.B. Lin, Acc. Chem. Res. 35(7), 511–522 (2002)CrossRefGoogle Scholar
  5. 5.
    M. Du, Q. Wang, C.P. Li, X.J. Zhao, J. Ribas, Cryst. Growth Des. 10, 3285 (2010)CrossRefGoogle Scholar
  6. 6.
    J.P. Zhang, S.L. Zheng, X.C. Huang, X.M. Chen, Angew. Chem. Int. Ed. 43, 206 (2004)CrossRefGoogle Scholar
  7. 7.
    X.M. Zhang, M.L. Tong, X.M. Chen, Angew. Chem. Int. Ed. 41, 1029 (2002)CrossRefGoogle Scholar
  8. 8.
    J.X. Meng, Y.G. Li, H. Fu, X.L. Wang, E.B. Wang, CrystEngComm 13, 649 (2011)CrossRefGoogle Scholar
  9. 9.
    Z.L. Fang, R.M. Yu, X.Y. Wu, J.S. Huang, C.Z. Lu, Cryst. Growth Des. 11, 2546 (2011)CrossRefGoogle Scholar
  10. 10.
    Z.L. Fang, J.G. He, Q.S. Zhang, Q.K. Zhang, X.Y. Wu, C.Z. Lu, R.M. Yu, Inorg. Chem. 50(22), 11403 (2011)CrossRefGoogle Scholar
  11. 11.
    X. Zeng, X. Yao, J. Zhang, Q. Zhang, W. Wu, A. Chai, J. Wang, Q. Zeng, J. Xie, Inorg. Chem. Front 2, 164 (2014)CrossRefGoogle Scholar
  12. 12.
    D.S. Li, J. Zhao, Y.P. Wu, B. Liu, L. Bai, K. Zou, M. Du, Inorg. Chem. 52, 8091 (2013)CrossRefGoogle Scholar
  13. 13.
    M. Zhao, S. Ou, C.D. Wu, Acc. Chem. Res. 47, 1199 (2014)CrossRefGoogle Scholar
  14. 14.
    J.R. Li, J. Sculley, H.C. Zhou, Chem. Rev. 112, 869 (2011)CrossRefGoogle Scholar
  15. 15.
    R. Decadt, K. Van Hecke, D. Depla, K. Leus, D. Weinberger, I. Van Driessche, P. Van Der Voort, R. Van Deun, Inorg. Chem. 51, 11623 (2012)CrossRefGoogle Scholar
  16. 16.
    F. Yu, X.J. Kong, Y.Y. Zheng, Y.P. Ren, L.S. Long, R.B. Huang, L.S. Zheng, Dalton Trans 43, 9503 (2009)CrossRefGoogle Scholar
  17. 17.
    Y.Z. Tang, M. Zhou, H.R. Wen, Z. Cao, X.W. Wang, S. Huang, CrystEngComm 8, 3010 (2011)Google Scholar
  18. 18.
    L.J. Yi, G.C. Xu, L. Zhang, D.Z. Jia, Inorg. Chem. Comm. 45, 36 (2014)CrossRefGoogle Scholar
  19. 19.
    H.B. Zhu, S.H. Gou, Coord. Chem. Rev. 255, 318 (2011)CrossRefGoogle Scholar
  20. 20.
    D.S. Deng, H. Guo, G.H. Kang, L.F. Ma, X. He, B.M. Ji, CrystEngComm 17, 1871 (2015)CrossRefGoogle Scholar
  21. 21.
    U. Dawid, F.P. Pruchnik, R. Starosta, Dalton Trans. 17, 3348 (2009)CrossRefGoogle Scholar
  22. 22.
    G.M. Sheldrick, SHELXL, Program for the Refinement of Crystalstructures. (University of Göttingen, Germany, 1997)Google Scholar
  23. 23.
    G.M. Sheldrick, SADABS, Empirical Absorption Correction Program. (University of Göttingen, Germany, 1997)Google Scholar
  24. 24.
    S.K. Dey, B. Bag, K.M. Abdul Malik, M.S. El Fallah, J. Ribas, S. Mitra. Inorg. Chem. 42, 4029 (2003)CrossRefGoogle Scholar
  25. 25.
    G. Hou, L. Bi, B. Li, L. Wu, Inorg. Chem. 49, 6474 (2010)CrossRefGoogle Scholar
  26. 26.
    S. Youngme, G.A. van Albada, N. Chaichit, P. Gunnasoot, P. Kongsaeree, I. Mutikainen, O. Roubeau, J. Reedijk, U. Turpeinen, Inorg. Chim. Acta 353, 119 (2003)CrossRefGoogle Scholar
  27. 27.
    A.W. Addison, T.N. Rao, J. Reedijk, J. van Rijn, G.C. Verschoor, J. Chem. Soc. Dalton Trans. 7, 1349 (1984)CrossRefGoogle Scholar
  28. 28.
    L.Y. Alikberova, D.V. Al’bov, A.S. Bushmeleva, G.A. Fedorova, V.V. Kravchenko, Russ. J. Coord. Chem. 40, 918 (2014)CrossRefGoogle Scholar
  29. 29.
    B.H. Koo, K.S. Lim, D.W. Ryu, W.R. Lee, E.K. Koh, C.S. Hong. Dalton Trans. 42, 7204 (2013)CrossRefGoogle Scholar
  30. 30.
    M. Nishio, S. Inami, M. Katayama, K. Ozutsumi, Y. Hayashi, Inorg. Chem. 51, 784 (2011)CrossRefGoogle Scholar
  31. 31.
    D. Kumar, A. Syamal, A. Kumar, P.K. Gupta, D. Dass, J. Indian Chem. Soc. 87, 417 (2010)Google Scholar
  32. 32.
    S.W. Li, Y.F. Wang, J.S. Zhao, Russ. J. Coord. Chem. 40, 653–658 (2014)CrossRefGoogle Scholar
  33. 33.
    Q.X. Meng, J. Ye, Z.L. Xu, H.T. Xu, Mater. Lett. 116, 378 (2014)CrossRefGoogle Scholar
  34. 34.
    M. Regueiro-Figueroa, L.M.P. Lima, V. Blanco, D. Esteban-Gómez, A. de Blas, T. Rodríguez-Blas, R. Delgado, C. Platas-Iglesias, Inorg. Chem. 53, 12859 (2014)CrossRefGoogle Scholar
  35. 35.
    F. Valach, R. Grobelny, T. Glowiak, J. Mrozinski, V. Lukes, Z. Blahova, J. Coord. Chem. 63, 1645 (2010)CrossRefGoogle Scholar
  36. 36.
    M.G. Cowan, J. Olguín, S. Narayanaswamy, J.L. Tallon, S. Brooker, J. Am. Chem. Soc. 134, 2892 (2011)CrossRefGoogle Scholar
  37. 37.
    D.L. Tierney, J. Phys. Chem. A 45, 10959 (2012)CrossRefGoogle Scholar
  38. 38.
    L.Y. Pang, P. Liu, C.P. Zhang, X. Chen, B. Chen, Y.Y. Wang, Q.Z. Shi, Inorg. Chim. Acta 403, 43 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Yifan Kang
    • 1
  • Xiqiang Liang
    • 2
  • Meng Jin
    • 1
  • Yuanfeng Li
    • 1
  • Junqi Cao
    • 1
  • Ruiting Sun
    • 1
  • Xin Zheng
    • 1
  • Meijin Lu
    • 1
  1. 1.Key Laboratory of Auxiliary Chemistry & Technology for Chemical Industry of Ministry of Education, College of Chemistry & Chemical EngineeringShaanxi University of Science & TechnologyXi’anPeople’s Republic of China
  2. 2.Departement of Laboratory MedicineXi’an Children HospitalShaanxiPeople’s Republic of China

Personalised recommendations