Can Spherical Vaterite Be Biomimetic Synthesized by Using Histidine-Grafted-Chitosan as an Organic Matrix?

  • Zhangxu Chen
  • Xianxue Li
  • Bingyun Zheng


Extensive application of vaterite in ceramics, biomedical implanting, encapsulation and drug delivery require the effectively controlling the size, morphology and polymorph of the obtained calcium carbonate. For this purpose, vaterite was synthesized by using histidine-grafted-chitosan (NHCS) as an organic matrix in this research. The effects of the initial concentration of NHCS, and the aging time on the morphology and polymorph were investigated. The prepared vaterite was characterized by field-emission scanning electron microscope, Fourier transform infrared spectrometer and X-ray diffraction. The result showed vaterite has presented as an advantage phase over calcite phase in presence of NHCS system, and the 91.6 wt% percentage of vaterite can be achieved when the initial concentration of NHCS is 1.000 mg L−1. Prolonging aging time from 0 to 24 h, the percentage of vaterite would be deduced from 94.4 to 86.2 wt%, in which the flaky-floret and multilayered vaterite transforms to calcite slowly. In contrast, a single crystalline rhombohedral calcite phase can only be obtained without adding NHCS in pure water system. The possible growth mechanism has been proposed by investigating the transition of crystal phase and formation of the vaterite during the growth process. The result indicates that NHCS is an effective template to biomimetic synthesis of vaterite, and provides a novel method for controlling synthesis other biomaterials.

Graphical Abstract


Vaterite Biomimetic synthesis Histidine-grafted-chitosan Template Initial concentration Aging time 



This work is supported by the National Science Foundation of China (21103095, 21206079), Fujian Provincial Natural Science Foundation (2015J01057, 2015J01644, 2017J01590, 2017J01710), Scientific Research Plan of Education Bureau of Fujian Province (JAT160431), Projects of Putian University (2015060, 2016015, 2016065).

Supplementary material

10904_2017_549_MOESM1_ESM.docx (611 kb)
Supplementary material 1 (DOCX 611 KB)


  1. 1.
    Z.T. Wang, P. Huang, O. Jacobson, Z. Wang, Y.J. Liu, L.S. Lin, J. Lin, N. Lu, H.M. Zhang, R. Tian, G. Niu, G. Liu, X.Y. Chen, ACS Nano 10, 3453–3460 (2016)CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    M. Okaniwa, Y. Oaki, H. Imai, Bull. Chem. Soc. Jpn. 88, 1459–1465 (2015)CrossRefGoogle Scholar
  3. 3.
    E. Firlar, T. Perez-Gonzalez, A. Olszewska, D. Faivre, T. Prozorov, J. Mater. Res. 31, 547–555 (2016)CrossRefGoogle Scholar
  4. 4.
    A. Sarkar, S. Mahapatra, J. Mater. Chem. A 2, 3808–3818 (2014)CrossRefGoogle Scholar
  5. 5.
    D.B. Trushina, T.V. Bukreeva, M.V. Kovalchuk, M.N. Antipina, Mater. Sci. Eng. C 45, 644–658 (2014)CrossRefGoogle Scholar
  6. 6.
    J.R. Lakkakula, R. Kurapati, I. Tynga, H. Abrahamse, A.M. Raichur, R.W.M. Krause, RSC Adv. 106, 104537–104548 (2016)CrossRefGoogle Scholar
  7. 7.
    E.G. Stephen, Geochim. Cosmochim. Acta 67, 1659–1666 (2003)CrossRefGoogle Scholar
  8. 8.
    T. Kasuga, A. Obata, H. Maeda, Y. Ota, X.F. Yao, K. Oribe, J. Mater. Sci. 23, 2349–2357 (2012)Google Scholar
  9. 9.
    S. Kim, C.B. Park, Langmuir 26, 14730–14736 (2010)CrossRefPubMedGoogle Scholar
  10. 10.
    J.W. Xiao, Z.N. Wang, Y.C. Tang, S.H. Yang, Langmuir 6, 4977–4983 (2010)CrossRefGoogle Scholar
  11. 11.
    D.B. Trushina, T.V. Bukreeva, M.V. Kovalchuk, M.N. Antipina, Mater. Sci. Eng. C 45, 644–658 (2014)CrossRefGoogle Scholar
  12. 12.
    B. Yang, Z.D. Nan, Mater. Res. Bull. 47, 521–526 (2012)CrossRefGoogle Scholar
  13. 13.
    A. Sergeeva, R. Sergeev, E. Lengert, A. Zakharevich, B. Parakhonskiy, D. Gorin, S. Sergeev, D. Volodkin, ACS Appl. Mater. Interface 7, 21315–22325 (2015)CrossRefGoogle Scholar
  14. 14.
    L.J. Liu, X.L. Zhang, X. Liu, J. Liu, G.Z. Lu, D.L. Kaplan, H.S. Zhu, Q. Lu, ACS Appl. Mater. Interface 7, 1735–1745 (2015)CrossRefGoogle Scholar
  15. 15.
    J.W. Xiao, Y.C. Zhu, Y.Y. Liu, H.J. Liu, Y. Zeng, F.F. Xu, L.Z. Wang, Cryst. Growth Des. 8, 2887–2891 (2008)CrossRefGoogle Scholar
  16. 16.
    D.Z. Yang, K. Yu, Y.F. Ai, H.P. Zhen, J. Nie, J.F. Kennedy, Carbohydr. Polym. 84, 990–996 (2011)CrossRefGoogle Scholar
  17. 17.
    X.D. Chen, M.H. Xin, M.C. Li, Z.X. Chen, Z.Q. Chen, Chin. J. Mater. Res. 30, 31–37 (2016)Google Scholar
  18. 18.
    A.J. Xie, Y.H. Shen, C.Y. Zhang, Z.W. Yuan, X.M. Zhu, Y.M. Yang, J. Cryst. Growth 285, 436–443 (2005)CrossRefGoogle Scholar
  19. 19.
    P. Krattiger, N. Nassif, A. Volkel, Y. Mastai, H. Wennemers, H. Cölfen, Colloids Surf. A 354, 218–225 (2010)CrossRefGoogle Scholar
  20. 20.
    B. Njegic-Dzakula, G. Falini, L. Brecevic, Z. Skoko, D. Kralj, J. Colloid Interface Sci. 343, 553–563 (2010)CrossRefPubMedGoogle Scholar
  21. 21.
    M.A. Hood, K. Landfester, R. Mun˜oz-Espı′, Cryst. Growth Des. 14, 1077–1085 (2014)CrossRefGoogle Scholar
  22. 22.
    H. Lu, M.A. Hood, S. Mauri, J.E. Baio, M. Bonn, R. Muñoz-Espí, T. Weidner, Chem. Commun. 51, 15902–15905 (2015)CrossRefGoogle Scholar
  23. 23.
    Y.H. Lai, L.S. Chen, W.C. Bao, Y.H. Ren, Y.X. Gao, Y.W. Yin, Y.F. Zhao, Cryst. Growth Des. 15, 1194–1200 (2015)CrossRefGoogle Scholar
  24. 24.
    Z.X. Chen, M.H. Xin, M.C. Li, J.P. Xu, X.X. Li, X.D. Chen, J. Cryst. Growth 404, 107–115 (2014)CrossRefGoogle Scholar
  25. 25.
    C.E. Weir, E.R. Lippincott, J. Res. Natl. Bur. Stand. 65A, 173–183 (1961)CrossRefGoogle Scholar
  26. 26.
    B. Schrader, D. Bougeard (eds.), Infrared and Raman spectroscopy (VCH, Weinheim, New York, 1995)Google Scholar
  27. 27.
    N.V. Vagenas, A. Gatsouli, C.G. Kontoyannis, Talanta 59, 831–836 (2003)CrossRefPubMedGoogle Scholar
  28. 28.
    S. Gopi, V.K. Subramanian, K. Palanisamy, Mater. Res. Bull. 48, 1906–1912 (2013)CrossRefGoogle Scholar
  29. 29.
    R. Ševčík, M. Pérez-Estébanez, A. Viani, P. Šašek, P. Mácová, Powder Technol. 284, 265–271 (2015)CrossRefGoogle Scholar
  30. 30.
    T. Siva, S. Muralidharan, S. Sathiyanarayanan, E. Manikandan, M. Jayachandran, J. Inorg. Organomet. Polym. (2017). doi: 10.1007/s10904-017-0520-1 CrossRefGoogle Scholar
  31. 31.
    V. Kumar, A. Dev, A.P. Gupta, Composites 56, 184–188 (2014)CrossRefGoogle Scholar
  32. 32.
    I. Polowczyk, A. Bastrzyk, T. Kozlecki, Physicochem. Probl. Miner. Process. 49, 631–639 (2013)Google Scholar
  33. 33.
    C.G. Kontoyannis, N.V. Vagenas, Analyst 125, 251–255 (2000)CrossRefGoogle Scholar
  34. 34.
    N. Feoktistova, J. Rose, V.Z. Prokopović, A.S. Vikulina, A. Skirtach, D. Volodkin, Langmuir 32, 4229–4238 (2016)CrossRefPubMedGoogle Scholar
  35. 35.
    E. Tolba, W.E.G Müller, B.M.A. Elhady, M. Neufurth, F. Wurm, S.F. Wang, H.C. Schrödera, X.H. Wang, J. Mater. Chem. B 4, 376–386 (2016)CrossRefGoogle Scholar
  36. 36.
    H. Zhang, J.F. Banfield, J. Phys. Chem. Lett. 3, 2882–2886 (2012)CrossRefGoogle Scholar
  37. 37.
    S.R. Payne, M. Heppenstall-Butler, M.F. Butler, Cryst. Growth Des. 7, 1262–1276 (2007)CrossRefGoogle Scholar
  38. 38.
    J.Y. Wang, Biochemistry (China Higher Education Press, Beijing, 2008)Google Scholar
  39. 39.
    P. Wan, Y. Zhao, H. Tong, Z.Y. Yang, Z.H. Zhu, X.Y. Shen, J.M. Hu, Mater. Sci. Eng. C 29, 222–227 (2009)CrossRefGoogle Scholar
  40. 40.
    Y.L. Su, H.R. Yang, W.X. Shi, H.X. Guo, Y. Zhao, D. Wang, Colloid Surf. A 355, 158–162 (2010)CrossRefGoogle Scholar
  41. 41.
    A. Sarkar, S. Mahapatra, Cryst. Growth Des. 10, 2129–2135 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants, College of Environmental and Biological EngineeringPutian UniversityPutianPeople’s Republic of China

Personalised recommendations