Advertisement

Nanoarchitectonics of Nanoporous Carbon Materials from Natural Resource for Supercapacitor Application

  • Lok Kumar Shrestha
  • Rekha Goswami Shrestha
  • Sahira Joshi
  • Rinita Rajbhandari
  • Nishanta Shrestha
  • Mandira Pradhananga Adhikari
  • Raja Ram Pradhananga
  • Katsuhiko Ariga
Article

Abstract

Nanoarchitectonics of nanoporous carbon materials (NCMs) derived from natural resource; Areca Catechu Nut (ACN) with enhanced electrochemical supercapacitance properties is reported. ACN powder is chemically activated in a tubular furnace at 400 °C and the effect of activating agent sodium hydroxide (NaOH), zinc chloride (ZnCl2) and phosphoric acid (H3PO4) on the textural properties, surface functional groups and electrochemical supercapacitance properties was thoroughly examined. We found that ACN derived NCMs are amorphous in nature comprising of macropores, micropores and hierarchical micro- and mesopore architecture depending on the activating agent. Surface area and pore volume are found in the range 25–1985 m2 g−1 and 0.12–3.42 cm3 g−1, respectively giving the best textural properties for H3PO4 activated NCM. Nevertheless, despite the different chemical activating agent used, all the prepared NCMs showed similar oxygen-containing surface functional groups (carboxyl, carboxylate, carbonyl and phenolic groups). The H3PO4 activated NCM showed excellent supercapacitance properties giving a high specific capacitance of ca. 342 F g−1 at a scan rate of 5 mV s−1 together with the high cyclic stability sustaining capacitance retention of about 97% after 5000 charging/discharging cycles. Electrochemical supercapacitance properties have demonstrated that the ACN derived novel nanoporous carbon material would be a potential material in energy storage application.

Keywords

Areca Catechu Nut Nanoarchitectonics Nanoporous carbon materials Chemical activation Electrochemical supercapacitance 

Notes

Acknowledgements

This work is partly supported by the World Premier International Research Initiative (WPI Initiative), MEXT, Japan and JSPS KAKENHI Grant Number JP 16H06518 (Coordination Asymmetry). SJ gratefully acknowledge the Institute of engineering, Department of Science and Humanities, Tribhuvan University for the study leave.

References

  1. 1.
    S. Kumar, R. Rani, N. Dilbaghi, K. Tankeshwar, K.-H. Kim, Chem. Soc. Rev. 46, 158 (2017)CrossRefGoogle Scholar
  2. 2.
    N. Imazu, T. Fujigaya, N. Nakashima, Bull. Chem. Soc. Jpn. 88, 217 (2015)CrossRefGoogle Scholar
  3. 3.
    L.K. Shrestha, Y. Yamauchi, J.P. Hill, K. Miyazawa, K. Ariga, J. Am. Chem. Soc. 135, 586 (2013)CrossRefGoogle Scholar
  4. 4.
    M. Navlani-Garcia, K. Mori, M. Wen, Y. Kuwahara, H. Yamashita, Bull. Chem. Soc. Jpn. 88, 1500 (2015)CrossRefGoogle Scholar
  5. 5.
    A. Suzuki, K. Murata, N. Mano, S. Tsujimura, Bull. Chem. Soc. Jpn. 89, 24 (2016)CrossRefGoogle Scholar
  6. 6.
    P. Bairi, K. Minami, W. Nakanishi, J.P. Hill, K. Ariga, L.K. Shrestha, ACS Nano 10, 6631 (2016)CrossRefGoogle Scholar
  7. 7.
    K.S. Lakhi, D.-H. Park, K. Al-Bahily, W. Cha, B. Viswanathan, J.-H. Choy, A. Vinu, Chem. Soc. Rev 46, 72 (2017)CrossRefGoogle Scholar
  8. 8.
    Y.-Y. Lai, Y.-J. Cheng, C.-S. Hsu, Energy Environ. Sci. 7, 1866 (2014)CrossRefGoogle Scholar
  9. 9.
    L. Hong, Y. Takagaki, H. Yoshikawa, N. Nakashima, Bull. Chem. Soc. Jpn. 89, 183 (2016)CrossRefGoogle Scholar
  10. 10.
    R. Rajendran, L.K. Shrestha, R.M. Kumar, R. Jayavel, J.P. Hill, K. Ariga, J. Inorg. Organomet. Polym. Mater. 25, 267 (2015)CrossRefGoogle Scholar
  11. 11.
    S. Wu, R. Ge, M. Lu, R. Xu, Z. Zhang, Nano. Energy 15, 379 (2015)CrossRefGoogle Scholar
  12. 12.
    K. Ariga, K. Minami, L.K. Shrestha, Analyst 141, 2629 (2016)CrossRefGoogle Scholar
  13. 13.
    W. Nakanishi, K. Minami, L.K. Shrestha, Q. Ji, J.P. Hill, K. Ariga, Nano Today 9, 378 (2014)CrossRefGoogle Scholar
  14. 14.
    K. Minami, Y. Kasuya, T. Yamazaki, Q. Ji, W. Nakanishi, J.P. Hill, H. Sakai, K. Ariga, Adv. Mater. 27, 4020 (2015)CrossRefGoogle Scholar
  15. 15.
    V. Krishnan, Y. Kasuya, Q. Ji, M. Sathish, L.K. Shrestha, S. Ishihara, K. Minami, H. Morita, T. Yamazaki, N. Hanagata, K. Miyazawa, S. Acharya, W. Nakanishi, J.P. Hill, K. Ariga, ACS Appl. Mater. Interfaces 7, 15667 (2015)CrossRefGoogle Scholar
  16. 16.
    P. Bairi, R.G. Shrestha, J.P. Hill, T. Nishimura, K. Ariga, L.K. Shrestha, J. Mater. Chem. A 4, 13899 (2016)CrossRefGoogle Scholar
  17. 17.
    J.R. Magana, Y.V. Kolen’ko, F.L. Deepak, C. Solans, R.G. Shrestha, J.P. Hill, K. Ariga, L.K. Shrestha, C. Rodriguez-Abreu, ACS Appl. Mater. Interfaces 8, 31231 (2016)CrossRefGoogle Scholar
  18. 18.
    T. Ma, K. Miyazaki, H. Ariga, S. Takakusagi, K. Asakura, Bull. Chem. Soc. Jpn. 88, 1029 (2015)CrossRefGoogle Scholar
  19. 19.
    S. Naghdi, B. Jaleh, A. Ehsani, Bull. Chem. Soc. Jpn. 88, 722 (2015)CrossRefGoogle Scholar
  20. 20.
    V. Malgras, Q. Ji, Y. Kamachi, T. Mori, F.-K. Shieh, K.C.-W. Wu, K. Ariga, Y. Yamauchi, Bull. Chem. Soc. Jpn. 88, 1171 (2015)CrossRefGoogle Scholar
  21. 21.
    K. Sakaushi, M. Antonietti, Bull. Chem. Soc. Jpn. 88, 386 (2015)CrossRefGoogle Scholar
  22. 22.
    Y. Li, H. Tan, R.R. Salunkhe, J. Tang, L.K. Shrestha, B. Bastakoti, H. Rong, T. Takei, J. Henzie, Y. Yamauchi, K. Ariga, Chem. Commun. 53, 236 (2017)CrossRefGoogle Scholar
  23. 23.
    E. Yamamoto, K. Kuroda, Bull. Chem. Soc. Jpn. 89, 501 (2016)CrossRefGoogle Scholar
  24. 24.
    S. Jin, J.P. Hill, Q. Ji, L.K. Shrestha, K. Ariga, J. Mater. Chem. A 4, 5737 (2016)CrossRefGoogle Scholar
  25. 25.
    Z. Huang, S. Che, Bull. Chem. Soc. Jpn. 88, 617 (2015)CrossRefGoogle Scholar
  26. 26.
    H. Tabuchi, K. Urita, I. Moriguchi, Bull. Chem. Soc. Jpn. 88, 1378 (2015)CrossRefGoogle Scholar
  27. 27.
    H. Kumagai, K. Takanabe, J. Kubota, K. Domen, Bull. Chem. Soc. Jpn. 88, 584 (2015)CrossRefGoogle Scholar
  28. 28.
    K. Ariga, A. Vinu, Y. Yamauchi, Q. Ji, J.P. Hill, Bull. Chem. Soc. Jpn. 86, 1 (2012)CrossRefGoogle Scholar
  29. 29.
    S.L. Candelaria, Y. Shao, W. Zhou, X. Li, J. Xiao, J.-G. Zhang, Y. Wang, J. Liu, J. Li, G. Cao, Nano. Energy 1, 195 (2012)CrossRefGoogle Scholar
  30. 30.
    Y. Gong, Z. Wei, J. Wang, P. Zhang, H. Li, Y. Wang, Sci. Rep. 4, 6349 (2014)CrossRefGoogle Scholar
  31. 31.
    B. Gao, H. Zhou, J. Yang, J. Mater. Chem. A 5, 524 (2017)CrossRefGoogle Scholar
  32. 32.
    D. Jia, Z. Yu, H. Tan, X. Li, F. Han, L. Li, H. Liu, J. Mater. Chem. A 7, 1516 (2017)CrossRefGoogle Scholar
  33. 33.
    I. Okman, S. Karagöz, T. Tay, M. Erdem, Appl. Surface Sci. 293, 138 (2014)CrossRefGoogle Scholar
  34. 34.
    S. Zhang, M. Zheng, Z. Lin, N. Li, Y. Liu, B. Zhao, H. Pang, J. Cao, P. He, Y. Shi, J. Mater. Chem. A 2, 15889 (2014)CrossRefGoogle Scholar
  35. 35.
    H. Liu, J. Zhang, C. Zhang, N. Bao, C. Cheng, Carbon 60, 289 (2013)CrossRefGoogle Scholar
  36. 36.
    M.J. Prauchner, K. Sapag, F. Rodríguez-Reinoso, Carbon 110, 138 (2016)CrossRefGoogle Scholar
  37. 37.
    M.A. Yahya, Z. Al-Qodah, C.W.Z. Ngah, Renew. Sustain. Energy Rev. 46, 218 (2015)CrossRefGoogle Scholar
  38. 38.
    R. Rajbhandari, L.K. Shrestha, R.R. Pradhananga, J. Nanosci. Nanotechnol. 12, 7002 (2012)CrossRefGoogle Scholar
  39. 39.
    L. Ma, P. Ning, Y. Zhang, X.Q. Wang, Chem. Eng. J. 137, 471 (2008)CrossRefGoogle Scholar
  40. 40.
    G. Sethia, A. Sayari, Carbon 99, 289 (2016)CrossRefGoogle Scholar
  41. 41.
    M.-H. Kim, K.-B. Kim, S.-M. Park, K.C. Roh, Sci. Rep. 6, 21182 (2016)CrossRefGoogle Scholar
  42. 42.
    S. Dutta, A. Bhaumik, K.C.-W. Wu, Energy Environ. Sci. 7, 3574 (2014)CrossRefGoogle Scholar
  43. 43.
    K. Ariga, J. Li, J. Fei, Q. Ji, J.P. Hill, Adv. Mater. 28, 1251 (2016)CrossRefGoogle Scholar
  44. 44.
    K. Ariga, Q. Ji, W. Nakanishi, J.P. Hill, M. Aono, Mater. Horz. 2, 406 (2015)CrossRefGoogle Scholar
  45. 45.
    G. Rydzek, Q. Ji, M. Li, P. Schaaf, J.P. Hill, F. Boulmedais, K. Ariga, Nano Today 10, 138 (2015)CrossRefGoogle Scholar
  46. 46.
    M. Aono, K. Ariga, Adv. Mater. 28, 989 (2016)CrossRefGoogle Scholar
  47. 47.
    H. Abe, J. Liu, K. Ariga, Mater. Today 19, 12 (2016)CrossRefGoogle Scholar
  48. 48.
    K. Ariga, K. Minami, M. Ebara, J. Nakanishi, Polym. J. 48, 371 (2016)CrossRefGoogle Scholar
  49. 49.
    Y. Sun, H. Li, G. Li, B. Gao, Q. Yue, X. Li, Bioresour. Technol. 217, 239 (2016)CrossRefGoogle Scholar
  50. 50.
    A. Nayak, B. Bhushan, V. Gupta, P. Sharma, J. Colloid Interface Sci. 493, 228 (2017)CrossRefGoogle Scholar
  51. 51.
    R. Rajbhandari, L.K. Shrestha, B.P. Pokharel, R.R. Pradhananga, J. Nanosci. Nanotechnol. 13, 2613 (2013)CrossRefGoogle Scholar
  52. 52.
    S. Joshi, L.K. Shrestha, Y. Kamachi, V. Malgras, M.A. Pradhananga, B.P. Pokharel, R.R. Pradhananga, K. Ariga, Y. Yamauchi, Powder Technol. 26, 894 (2015)CrossRefGoogle Scholar
  53. 53.
    S. Joshi, L.K. Shrestha, Y. Kamachi, Y. Yamauchi, M.A. Pradhananga, B.P. Pokharel, K. Ariga, R.R. Pradhananga, J. Nanosci. Nanotechnol. 15, 1465 (2015)CrossRefGoogle Scholar
  54. 54.
    M.P. Adhikari, R. Adhikari, R.G. Shrestha, R. Rajendran, L. Adhikari, P. Bairi, R.R. Pradhananga, L.K. Shrestha, K. Ariga, Bull. Chem. Soc. Jpn. 88, 1108 (2015)CrossRefGoogle Scholar
  55. 55.
    L.K. Shrestha, L. Adhikari, R.G. Shrestha, M.P. Adhikari, R. Adhikari, J.P. Hill, R.R. Pradhananga, K. Ariga, Sci. Technol. Adv. Mater. 17, 183 (2016)CrossRefGoogle Scholar
  56. 56.
    N.V. Sych, S.I. Trofymenko, O.I. Poddubnaya, M.M. Tsyba, V.I. Sapsay, D.O. Klymchuk, A.M. Puziy, App. Surf. Sci. 261, 75 (2012)CrossRefGoogle Scholar
  57. 57.
    S. Hu, S. Zhang, N. Pan, Y.-L. Hsieh, J. Power Sources 270, 106 (2014)CrossRefGoogle Scholar
  58. 58.
    B.H. Hameed, F.B.M. Daud, Chem. Eng. J. 139, 48 (2008)CrossRefGoogle Scholar
  59. 59.
    A.P. Terzyk, Colloids Surf. 177, 23 (2001)CrossRefGoogle Scholar
  60. 60.
    Z. Zhu, A. Li, L. Yan, F. Liu, Q. Zhang, J. Colloid Interface Sci. 316, 628 (2007)CrossRefGoogle Scholar
  61. 61.
    A.C. Ferrari, J. Robertson, Phys. Rev. B 64, 075414 (2001)CrossRefGoogle Scholar
  62. 62.
    A.C. Ferrari, J. Robertson, Phys. Rev. B 61, 14095 (2000)CrossRefGoogle Scholar
  63. 63.
    N. Shimodaira, A. Masui, J. Appl. Phys. 92, 902 (2002)CrossRefGoogle Scholar
  64. 64.
    H. Marsh, F. Rodríguez-Reinoso, Activated Carbon, 1st edn. (Elsevier, London, 2006)Google Scholar
  65. 65.
    F. Caturla, M. Molina-Sabio, F. Rodríguez-Reinoso, Carbon 29, 999 (1991)CrossRefGoogle Scholar
  66. 66.
    T.-H. Liou, Chem. Eng. J. 158, 129 (2010)CrossRefGoogle Scholar
  67. 67.
    D. Montané, V. Torné-Fernádez, V. Fierro, Chem. Eng. J. 106, 1 (2005)CrossRefGoogle Scholar
  68. 68.
    W. Tian, Q. Gao, Y. Tan, K. Yang, L. Zhu, C. Yang, H. Zhang, J. Mater. Chem. A 3, 5656 (2015)CrossRefGoogle Scholar
  69. 69.
    Y. Zhu, S. Murali, M.D. Stoller, K.J. Ganesh, W. Cai, P.J. Ferreira, A. Pirkle, R.M. Wallace, K.A. Cychosz, M. Thommes, D. Su, E.A. Stach, R.S. Ruoff, Science 332, 1537 (2011)CrossRefGoogle Scholar
  70. 70.
    L.K. Shrestha, R.G. Shrestha, J.P. Hill, T. Tsuruoka, Q. Ji, T. Nishimura, K. Ariga, Langmuir 32, 12511 (2016)CrossRefGoogle Scholar
  71. 71.
    M. Sevilla, A.B. Fuertes, ACS Nano 8, 5069 (2014)CrossRefGoogle Scholar
  72. 72.
    W. Tian, Q. Gao, L. Zhang, C. Yang, Z. Li, Y. Tan, W. Qian, H. Zhang, J. Mater. Chem. A 4, 8690 (2016)CrossRefGoogle Scholar
  73. 73.
    T. Lin, I.-W. Chen, F. Liu, C. Yang, H. Bi, F. Xu, F. Huang, Science 350, 1508 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Lok Kumar Shrestha
    • 1
  • Rekha Goswami Shrestha
    • 1
  • Sahira Joshi
    • 2
  • Rinita Rajbhandari
    • 2
  • Nishanta Shrestha
    • 3
  • Mandira Pradhananga Adhikari
    • 3
  • Raja Ram Pradhananga
    • 3
  • Katsuhiko Ariga
    • 1
  1. 1.International Center for Materials Nanoarchitectonics (MANA)National Institute for Materials Science (NIMS)TsukubaJapan
  2. 2.Institute of EngineeringTribhuvan UniversityKathmanduNepal
  3. 3.Central Department of ChemistryTribhuvan UniversityKathmanduNepal

Personalised recommendations