Advertisement

d-Maltose Synthesized Silver Nanoparticles for Biofilm Eradication

  • Vichuda Sapa
  • Sukanya Srijampa
  • Patcharaporn Tippayawat
  • Apiwat Chompoosor
Article
  • 200 Downloads

Abstract

Biofilms are complex bacterial communities have a mechanism for antibiotic resistance leading to human health problems. It remains challenging to treat and eradicate biofilms. In this work, the use of d-maltose synthesized silver nanoparticles (AgNPs) was investigated in an effort to eradicate a biofilm. AgNPs were synthesized using a modified Tollen’s method. d-maltose was used in synthesizing AgNPs with different concentrations of d-maltose (0.01, 0.05 and 0.1 M), referred to as NP1, NP2 and NP3, respectively. TEM images revealed that the particles were polygon shaped. The particle sizes were found to be 86.81 ± 13.39, 54.94 ± 11.63 and 31.43 ± 31.76 nm depending on their sugar concentrations. UV–Vis, ATR–FTIR, and XRD patterns were employed to characterize the AgNPs. Then, these AgNPs were investigated for their anti-bacterial effects against Escherichia coli and Staphylococcus aureus. Evaluation of the minimum inhibitory concentration and minimal bactericidal concentration revealed that S. aureus was inhibited by all AgNPs and killed by NP1 and NP3, and E. coli was inhibited and killed at all AgNPs doses. Furthermore, anti-biofilm activity against these two bacteria was observed using SEM and confocal laser scanning microscopy. This sugar coated AgNPs is a promising material for use in eradication of biofilms.

Keywords

Silver nanoparticles Green synthesis Anti-biofilm Antibacterial activity 

Notes

Acknowledgements

The authors would like to acknowledge the financial support by the Thailand Research Fund (MRG5980137) and the Nanotechnology Center (NANOTEC), NSTDA, Ministry of Science and Technology, Thailand, through its program of Center of Excellence Network.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    M.E. Olson, H. Ceri, D.W. Morck, A.G. Buret, R.R. Read, Can. J. Vet. Res 66, 86 (2002)PubMedPubMedCentralGoogle Scholar
  2. 2.
    D. Lebeaux, J.M. Ghigo, C. Beloin, Microbiol. Mol. Biol. Rev 78, 510 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    A. Almatroudi, I.B. Gosbell, H. Hu, S.O. Jensen, B.A. Espedido, S. Tahir, T.O. Glasbey, P. Legge, G. Whiteley, A. Deva, K. Vickery, J. Hosp. Infect 93, 263 (2016)CrossRefPubMedGoogle Scholar
  4. 4.
    J. Gu, Y. Su, P. Liu, P. Li, P. Yang, ACS Appl. Mater. Interfaces 9, 198 (2017)CrossRefPubMedGoogle Scholar
  5. 5.
    K.-H. Cho, J.-E. Park, T. Osaka, S.-G. Park, Electrochim. Acta 51, 956 (2005)CrossRefGoogle Scholar
  6. 6.
    A. Panáček, L. Kvítek, R. Prucek, M. Kolář, R. Večeřová, N. Pizúrová, V.K. Sharma, T. Nevěčná, R. Zbořil, J. Phys. Chem. B 110, 16248 (2006)CrossRefPubMedGoogle Scholar
  7. 7.
    E. Filippo, A. Serra, A. Buccolierri, D. Manno, J. Non-Cryst. Solids 356, 344 (2010)CrossRefGoogle Scholar
  8. 8.
    H.H. Nersisyan, J.H. Lee, H.T. Son, C.W. Won, D.Y. Maeng, Mater. Res. Bull 38, 949 (2003)CrossRefGoogle Scholar
  9. 9.
    N. Vigneshwaran, R.P. Nachane, R.H. Balasubramanya, P.V. Varadarajan, Carbohydr. Res. 341, 2012 (2006)CrossRefPubMedGoogle Scholar
  10. 10.
    N.N. Mallikarjuna, R.S. Varma, Cryst. Growth Des. 7, 686 (2007)CrossRefGoogle Scholar
  11. 11.
    T. Theivasanthi, M. Alager, Nano Biomed. Eng. 4, 58 (2012)CrossRefGoogle Scholar
  12. 12.
    D. Manikprabhu, K. Lingappa, J. Pharm. Res. 6, 255 (2013)Google Scholar
  13. 13.
    X. Ji, X. Song, J. Li, Y. Bai, W. Yang, X. Peng, J. Am. Chem. Soc. 129, 13939 (2007)CrossRefPubMedGoogle Scholar
  14. 14.
    A.M. Awwad, N.M. Salem, Nanosci. Nanotechnol. 2, 208 (2012)CrossRefGoogle Scholar
  15. 15.
    J.S. Kim, E. Kuk, K.N. Yu, J.-H. Kim, S.J. Park, H.J. Lee, S.H. Kim, Y.K. Park, Y.H. Park, C.-Y. Hwang, Y.-K. Kim, Y.-S. Lee, D.H. Jeong, M.-H. Cho, Nanomedicine 3, 95 (2007)CrossRefPubMedGoogle Scholar
  16. 16.
    V.D. Badwaik, L.M. Vangala, D.S. Pender, C.B. Willis, Z.P. Aguilar, M.S. Gonzalez, R. Paripelly, R. Dakshinamurthy, Nanoscale Res. Lett. (2012). doi: 10.1186/1556-276X-7-623 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    C.R. Bowman, F.C. Bailey, M. Elrod-Erickson, A.M. Neigh, R.R. Otter, Environ. Toxicol. Chem. 31, 1793 (2012)CrossRefPubMedGoogle Scholar
  18. 18.
    Z.-M. Xiu, Q.-B. Zhang, H.L. Puppala, V.L. Colvin, P.J.J. Alvarez, Nano Lett. 12, 4271 (2012)CrossRefPubMedGoogle Scholar
  19. 19.
    A.F. de Faria, D.S.T. Martinez, S.M.M. Meira, A.C.M. de Moraes, A. Brandelli, A.G.S. Filho, O.L. Alves, Colloids Surf. B Biointerfaces 113, 115 (2014)CrossRefPubMedGoogle Scholar
  20. 20.
    M. Davoodbasha, S.-Y. Lee, S.-C. Kim, J.-W. Kim, RSC Adv. 5, 35052 (2015)CrossRefGoogle Scholar
  21. 21.
    Z. Lu, K. Rong, J. Li, H. Yang, R. Chen, J. Mater. Sci. Mater. Med. 24, 1465 (2013)CrossRefPubMedGoogle Scholar
  22. 22.
    X. Wang, Z. Ji, C.H. Chang, H. Zhang, M. Wang, Y.-P. Liao, S. Lin, H. Meng, R. Li, B. Sun, L.V. Winkle, K.E. Pinkerton, J.I. Zink, T. Xia, A.E. Nel, Small 10, 385 (2014)CrossRefPubMedGoogle Scholar
  23. 23.
    A.A. El-Kheshen, S.F. El-Rab, F. Gad, Der Pharma Chemica 4, 53 (2012)Google Scholar
  24. 24.
    V. Kostenko, J. Lyczak, K. Turner, R.J. Martinuzzi, Antimicrob. Agents Chemother 54, 5120 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    M.L.W. Knetsch, L.H. Koole, Polymers 3, 340 (2011)CrossRefGoogle Scholar
  26. 26.
    K. Kalishwaralal, S. BarathManiKanth, S.R. Pandian, V. Deepak, S. Gurunathan, Colloids Surf. B Biointerfaces 79, 340 (2010)CrossRefPubMedGoogle Scholar
  27. 27.
    P.S. Stewart, J. Bacteriol. 185, 1485 (2003)CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Materials Science and Nanotechnology Program, Faculty of ScienceKhon Kaen UniversityKhon KaenThailand
  2. 2.Biomedical Sciences, Graduate SchoolKhon Kaen UniversityKhon KaenThailand
  3. 3.Division of Clinical Microbiology, Faculty of Associated Medical SciencesKhon Kaen UniversityKhon KaenThailand
  4. 4.The Center for Research & Development of Medical Diagnostic Laboratories, Faculty of Associated Medical SciencesKhon Kaen UniversityKhon KaenThailand
  5. 5.Nanotec-KKU Center of Excellence on Advanced Nanomaterials for Energy Production and StorageKhon KaenThailand
  6. 6.Department of Chemistry, Faculty of ScienceRamkhamhaeng UniversityBangkokThailand

Personalised recommendations