RETRACTED ARTICLE: A Review on Nanoporous Gallium Nitride (NPGaN) Formation on P-Type Silicon Substrate with the Mather-type Plasma Focus Device (MPFD)

  • S. Sharifi Malvajerdi
  • A. Salar Elahi


A Mather-type plasma focus device (MPFD) was unitized to fabricated porous gallium nitride (GaN) on p-type silicon (Si) substrate with a <100> crystal orientation for the first time in a deposition process. GaN was deposited on Si with four and seven shots. The samples went through a three phase annealing procedure. First, the semiconductors were annealed in the PFD with nitrogen plasma shots after their deposition, second, a thermal chemical vapor deposition (TCVD) annealed the samples for 1 at 1050 °C by nitrogen gas at 1 Pa pressure. Finally, an electric furnace annealed the samples for 1 h at 1150 °C with continues flow of nitrogen. Porous GaN structures were observed by field emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM). Furthermore, X-ray diffraction (XRD) analyze was carried out to determine the crystallinity of GaN after the samples were annealed. Energy-dispersive X-ray spectroscopy (EDX) indicated the amount of gallium, nitrogen, and oxygen due to self-oxidation of the samples. Photoluminescence (PL) spectroscopy revealed emissions at 2.94 and 3.39 eV which shows hexagonal wurtzite crystal structures was formed.


GaN Photoluminescence Plasma focus device Porous Semiconductors 



The author would like to acknowledge the fusion laboratory of Amirkabir University of Technology for the use of their PFD.


  1. 1.
    T.D. Moustakas, J.I. Pankove (eds.), Gallium Nitride (GaN) I, Semiconductors and Semimetals, vol. 50. (Academic Press, London, 1998), ISBN-10: 0127521585Google Scholar
  2. 2.
    M.E. Levinshtein, S.L. Rumyantsev, M.S. Shur (eds.), Properties of Advanced Semiconductor Materials: GaN, AIN, InN, BN, SiC, SiGe. (Wiley-Interscience, New York, 2001), ISBN: 978-0-471-35827-5Google Scholar
  3. 3.
    M. Umeno, T. Egawa, H. Ishikawa, Mater. Sci. Semicond. Process. 4, 459–466 (2001)CrossRefGoogle Scholar
  4. 4.
    C. Bayram, J.A. Ott, K.-T. Shiu, C.-W. Cheng, Y. Zhu, J. Kim, M. Razeghi, D.K. Sadana, Adv. Funct. Mater. 24(28), 4492–4496 (2014)CrossRefGoogle Scholar
  5. 5.
    W.K. Wang, M.C. Jiang, Jpn. J. Appl. Phys. 55(9), 095503 (2016)CrossRefGoogle Scholar
  6. 6.
    L.F. Eastman, U.K. Mishra, IEEE Spectr. 39(5), 28–33 (2002)CrossRefGoogle Scholar
  7. 7.
    T. Fujii, Y. Gao, R. Sharma, E.L. Hu, S.P. Den Baars, S. Nakamura, Appl. Phys. Lett. 84(6), 855–857 (2004)CrossRefGoogle Scholar
  8. 8.
    S. Nakamura, S. Pearton, G. Fasol, The Blue Laser Diode. (Springer, Berlin, 2000)CrossRefGoogle Scholar
  9. 9.
    M.A. Khan, J.N. Kuznia, D.T. Olson, J.M. Van Hove, M. Blasingame, L.F. Reitz, Appl. Phys. Lett. 60(23), 2917–2919 (1992)CrossRefGoogle Scholar
  10. 10.
    J. Neufeld, N.G. Toledo, S.C. Cruz, M. Iza, S.P. Denbaars, U.K. Mishra, Appl. Phys. Lett. 93(14), 143502 (2008)CrossRefGoogle Scholar
  11. 11.
    J.Y. Li, X.L. Chen, Z.Y. Qiao, Y.G. Cao, Y.C. Lan, J. Crystal Growth. 213(3–4), 408–410 (2000)CrossRefGoogle Scholar
  12. 12.
    J. Goldberger, R. He, Y. Zhang, S. Lee, H. Yan, H.-J. Choi, P. Yang, Nature 422, 599–602 (2003)CrossRefPubMedGoogle Scholar
  13. 13.
    M.J. Shin, M. Kim, G.S. Lee, H.S. Ahn, S.N. Yi, DH Ha, Mater. Lett. 91, 191–194 (2013)CrossRefGoogle Scholar
  14. 14.
    J.R. Chang, S.P. Chang, Y.J. Li, Y.J. Cheng, K.P. Sou, J.K. Huang, H.C. Kuo, C.Y. Chang, Appl. Phys. Lett. 100, 261103 (2012)CrossRefGoogle Scholar
  15. 15.
    H.-J. Choi, J.C. Johnson, H. Rongrui, S.-K. Lee, F. Kim, P. Pauzauskie, J. Goldberger, R.J. Saykally, P. Yang, J. Phys. Chem. B 107(34), 8721–8725 (2003)CrossRefGoogle Scholar
  16. 16.
    J. Han, M.H. Crawford, R.J. Shul, J.J. Figiel, M. Banas, L. Zhang, Y.K. Song, H. Zhou, A.V. Nurmikko, Appl. Phys. Lett. 73, 1688 (1998)CrossRefGoogle Scholar
  17. 17.
    J.J. Wierer Jr, N. Tansu, A.J. Fischer, J.Y. Tsao, Laser Photonics Rev. 10(4), 612–622 (2016)CrossRefGoogle Scholar
  18. 18.
    M. Mynbaeya, A. Titkov, A. Kryzhanovski, I. Kotousova, A.S. Zubrilov, V.V. Ratnikov, V.Y. Davydov, N.I. Kuznetsov, K. Mynbaev, D.V. Tsvetkov, S. Stepanov, A. Cherenkov, V.A. Dmitriev, MRS Internet J. Nitride Semicond. Res. 4(1), 67–72 (1999)Google Scholar
  19. 19.
    Y.D. Wang, S.J. Chua, M.S. Sander, P. Chen, S. Tripathy, C.G. Fonstad, Appl. Phys. Lett. 85(5), 816–818 (2004)CrossRefGoogle Scholar
  20. 20.
    A. calderon, J.J. Alvarado-Gil, Y.G. Gurevich, A. Cruz-Orea, I. Delgadillo, H. Vargas, L.C.M. Miranda, Phys. Rev. Lett. 79, 5022 (1997)CrossRefGoogle Scholar
  21. 21.
    Y.H. Lanyon, De G. Marzi, Y.E. Waston, A.J. Quinn, J.P. Gleeson, G. Redmond, D.W.M. Arrigan, Anal. Chem. 79, 8 (2007)CrossRefGoogle Scholar
  22. 22.
    M. Ahmad, S. Al-Hawat, M. Akel, J Fusion Energ 32, 471 (2013)CrossRefGoogle Scholar
  23. 23.
    S.S. Malvajerdi, A.S. Elahi, M. Habibi, A. Khajenezhad, Growth and characterization of GaN nanoparticles on P-type Si (100) substrate by plasma focus device with nitrogen plasma, Int. J. Hydr. Energy (2016). doi: 10.1016/j.ijhydene.2016.12.040 CrossRefGoogle Scholar
  24. 24.
    O. Mangla, S. Roy, K.K. Ostrikov, Nanomaterials 6(1), 4 (2016)CrossRefGoogle Scholar
  25. 25.
    M. Omrani, M. Habibi, M.S. Moti Birjandi, Int. J. Hydr. Energy 41, 9 (2016)CrossRefGoogle Scholar
  26. 26.
    O. Mangla, M.P. Srivastava, J. Mater. Sci. 48, 1 (2013)CrossRefGoogle Scholar
  27. 27.
    M. Habibi, Phys. Lett. A 380, 439–443 (2016)CrossRefGoogle Scholar
  28. 28.
    M. Sohrabi, M. Habibi, V. Ramezani, Phys. Lett. A 378, 48 (2014)CrossRefGoogle Scholar
  29. 29.
    A. Schmidt, V. Tang, D. Welch, Phys. Rev. Lett. 109, 205003 (2012)CrossRefPubMedGoogle Scholar
  30. 30.
    Q.N. Abdullah, F.K. Yam, Y. Yusof, H. Zainuriah, Adv. Mater. Res. 925, 450–454 (2014)CrossRefGoogle Scholar
  31. 31.
    A.L. Patterson, Phys. Rev. 56, 978 (1939)CrossRefGoogle Scholar
  32. 32.
    A. Argoitia, C.C. Hayman, J.C. Angus, L. Wang, J.S. Dyck, K. Kash, Appl. Phys. Lett. 70, 179 (1998)CrossRefGoogle Scholar
  33. 33.
    V.A. Christie, S.I. Liem, R.J. Reeves, V.J. Kennedy, A Markwitz, S.M. Durbin, Curr. Appl. Phys. 4(2–4), 225–228 (2004)CrossRefGoogle Scholar
  34. 34.
    H. Qiu, C. Cao, H. Zhu, Mater. Sci. Eng. 136(1), 33–36 (2007)CrossRefGoogle Scholar
  35. 35.
    Y.D. Wang, K.Y. Zang, S.J. Chua, S. Tripathy, P. Chen, C.G. Fonstad, App. Phys. Lett 87, 251915 (2005)CrossRefGoogle Scholar
  36. 36.
    L. Yanbo, M. Zheng, L. Ma, W. Shen, Nanotechnology 17, 5101–5105 (2006)CrossRefGoogle Scholar
  37. 37.
    Y. Suda, K. Obata, Phys. Rev. Lett. 80, 3559 (1998)CrossRefGoogle Scholar
  38. 38.
    R. Stepniewski, A. Wysmolek, M. Potemski, K. Pakula, J.M. Baranowski, I. Grzegory, S. Porowski, G. Martinez, P. Wyder, Phys. Rev. Lett. 91, 226404 (2003)CrossRefPubMedGoogle Scholar
  39. 39.
    S. Benykhlef, A. Bekhoukh, R. Berenguer, A. Benyoucef, E. Morallon, PANI-derived polymer/Al2O3 nanocomposites: synthesis, characterization and electrochemical studies. Colloid. Polym. Sci. 294(12), 1877–1885 (2014)CrossRefGoogle Scholar
  40. 40.
    F. Chouli et al., A novel conducting nanocomposite obtained by p-anisidine and aniline with titanium(IV) oxide nanoparticles: synthesis, characterization, and electrochemical properties. Polym. Compos. 34(2), 468 (2015)Google Scholar
  41. 41.
    I. Radja et al., Characterization and electrochemical properties of conducting nanocomposites synthesized from p-anisidine and aniline with titanium carbide by chemical oxidative method. Synth. Metals 202, 25–32 (2015)CrossRefGoogle Scholar
  42. 42.
    F.R. Simões, L.O.S. Bulhões, C. Ernesto, Pereira synthesis and characterization of conducting composites obtained from 2-methylaniline and aniline with activated carbon. Macromol. Res. 22, 26–31 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Plasma Physics Research Center, Science and Research BranchIslamic Azad UniversityTehranIran

Personalised recommendations