Advertisement

Study of Photoinduced Electron Transfer Process in Ruthenium Complex Modified Zinc Oxide Nanoparticles by Ultrafast Time-Resolved Transient Absorption Spectroscopy

  • Wenjuan Xiong
  • Lihong Yu
  • Haiting Shi
  • David L. Phillips
  • Wai Kin Chan
Article

Abstract

We report the preparation of ruthenium complex functionalized zinc oxide nanoparticles and the studies of the photophysical properties by ultrafast time-resolved transient absorption spectroscopy. Diazonium group was used as the anchoring unit on ZnO surface and covalent linkage was formed between the ruthenium complex and ZnO upon UV irradiation. The morphological and electron transfer properties of the ruthenium complex modified ZnO were studied. XPS and EDX results confirmed the presence of covalent linkage. The charge generation and the transport dynamics of this light harvesting system were probed by ultrafast transient absorption (TA) spectroscopy. No positive TA absorption band was observed, which suggested an ultrafast direct electron injection from the singlet 1MLCT excited state of the ruthenium complex to the conduction band of ZnO without going via the triplet 3MLCT excited state. The time constants for the ground states bleaching of the complex modified ZnO are 8.1 and 167 ps, both of which are shorter than those of the pure ruthenium complex (21.7 and 360 ps). This further suggests a strong electronic coupling between the ruthenium complex and ZnO.

Keywords

Zinc oxide Ruthenium complex Surface modification Transient absorption 

Notes

Acknowledgements

This work was supported by a grant from the Research Grants Council of Hong Kong (HKU700613P, AoE/P-03/08) and the University Grants Committee Special Equipment Grant (SEG-HKU-07).

References

  1. 1.
    X. Wang, C.J. Summers, Z.L. Wang, Nano Lett. 4, 423–426 (2004)CrossRefGoogle Scholar
  2. 2.
    J.C. Johnson, H. Yan, R.D. Schaller, L.H. Haber, R.J. Saykally, P. Yang, J. Phys. Chem. B 105, 11387–11390 (2001)CrossRefGoogle Scholar
  3. 3.
    K. Keis, C. Bauer, G. Boschloo, A. Hagfeldt, K. Westermark, H. Rensmo, H. Siegbahn, J. Photochem. Photobiol. A 148, 57–64 (2002)CrossRefGoogle Scholar
  4. 4.
    K. Tennakone, G.R.R.A. Kumara, I.R.M. Kottegoda, V.P.S. Perera, Chem. Commun. 1, 15–16 (1999)CrossRefGoogle Scholar
  5. 5.
    E. Galoppini, W. Guo, J. Am. Chem. Soc. 123, 4342–4343 (2001)CrossRefGoogle Scholar
  6. 6.
    J.E. Kroeze, N. Hirata, S. Koops, Md.K. Nazeeruddin, S.-M. Lukas, M. Grätzel, J.R. Durrant, J. Am. Chem. Soc. 128, 16376–16383 (2006)CrossRefGoogle Scholar
  7. 7.
    E.I.M. Kristine Kilså, D. Kuciauskas, R. Villahermosa, N.S. Lewis, J.R. Winkler, H.B. Gray, J. Phys. Chem. A 107, 3379–3383 (2003)CrossRefGoogle Scholar
  8. 8.
    C. Wöll, Prog. Surf. Sci. 82, 55–120 (2007)CrossRefGoogle Scholar
  9. 9.
    M. Losurdo, M.M. Giangregorio, Appl. Phys. Lett. 86, 091901 (2005)CrossRefGoogle Scholar
  10. 10.
    R. Heinhold, G. Williams, S. Cooil, D. Evans, M. Allen, Phys. Rev. B 88, 235315 (2013)CrossRefGoogle Scholar
  11. 11.
    K. Keis, J. Lindgren, S.-E. Lindquist, A. Hagfeldt, Langmuir 16, 4688–4694 (2000)CrossRefGoogle Scholar
  12. 12.
    P.J. Hotchkiss, M. Malicki, A.J. Giordano, N.R. Armstrong, S.R. Marder, J. Mater. Chem 21, 3107–3112 (2011)CrossRefGoogle Scholar
  13. 13.
    B. Zhang, T. Kong, W. Xu, R. Su, Y. Gao, G. Cheng, Langmuir 26, 4514–4522 (2010)CrossRefGoogle Scholar
  14. 14.
    N.S. Norberg, D.R. Gamelin, J. Phys. Chem. B 109, 20810–20816 (2005)CrossRefGoogle Scholar
  15. 15.
    P.W. Sadik, S.J. Pearton, D.P. Norton, E. Lambers, F. Ren, J. Appl. Phys 101, 104514 (2007)CrossRefGoogle Scholar
  16. 16.
    J. Singh, J. Im, J.E. Whitten, J.W. Soares, D.M. Steeves, Chem. Phys. Lett. 497, 196–199 (2010)CrossRefGoogle Scholar
  17. 17.
    C. Wang, N. Huang, H. Zhuang, X. Jiang, ACS Appl, Mater. Interfaces 7, 7605–7612 (2015)CrossRefGoogle Scholar
  18. 18.
    M. Montalti, S. Wadhwa, W.Y. Kim, R.A. Kipp, R.H. Schmehl, Inorg. Chem 39, 76–84 (2000)CrossRefGoogle Scholar
  19. 19.
    D.-E. Jiang, B.G. Sumpter, S. Dai, J. Am. Chem. Soc. 128, 6030–6031 (2006)CrossRefGoogle Scholar
  20. 20.
    D.-E. Jiang, B.G. Sumpter, S. Dai, J. Phys. Chem. B 110, 23628–23632 (2006)CrossRefGoogle Scholar
  21. 21.
    K. Boukerma, M.M. Chehimi, J. Pinson, C. Blomfield, Langmuir 19, 6333–6335 (2003)CrossRefGoogle Scholar
  22. 22.
    P. Allongue, M. Delamar, B. Desbat, O. Fagebaume, R. Hitmi, J. Pinson, J.-M. Savéant, J. Am. Chem. Soc. 119, 201–207 (1997)CrossRefGoogle Scholar
  23. 23.
    L. Santos, A. Mattiuzzi, I. Jabin, N. Vandencasteele, F.o.. Reniers, O. Reinaud, P. Hapiot, S.b.. Lhenry, Y. Leroux, C. Lagrost, J. Phys. Chem. C 118, 15919–15928 (2014)CrossRefGoogle Scholar
  24. 24.
    A. Adenier, E. Cabet-Deliry, A. Chaussé, S. Griveau, F. Mercier, J. Pinson, C. Vautrin-Ul, Chem. Mater 17, 491–501 (2005)CrossRefGoogle Scholar
  25. 25.
    K.A.S.L. Madec, J.-C. Badot, B. Humbert, P. Moreau, O. Dubrunfaut, B. Lestriez, D. Guyomard, J. Gaubicher, Phys. Chem. Chem. Phys. 16, 22745–22753 (2014)CrossRefGoogle Scholar
  26. 26.
    M. Delamar, R. Hitmi, J. Pinson, J.M. Saveant, J. Am. Chem. Soc. 114, 5883–5884 (1992)CrossRefGoogle Scholar
  27. 27.
    B. Jousselme, G. Bidan, M. Billon, C. Goyer, Y. Kervella, S. Guillerez, E.A. Hamad, C. Goze-Bac, J.-Y. Mevellec, S. Lefrant, J. Electroanal. Chem 621, 277–285 (2008)CrossRefGoogle Scholar
  28. 28.
    E. Bekyarova, M.E. Itkis, P. Ramesh, C. Berger, M. Sprinkle, W.A. de Heer, R.C. Haddon, J. Am. Chem. Soc. 131, 1336–1337 (2009)CrossRefGoogle Scholar
  29. 29.
    M. Toupin, D. Bélanger, Langmuir 24, 1910–1917 (2008)CrossRefGoogle Scholar
  30. 30.
    B. Tong, H. Yang, W. Xiong, F. Xie, J. Shi, J. Zhi, W.K. Chan, Y. Dong, J. Phys. Chem. B 117, 5338–5344 (2013)CrossRefGoogle Scholar
  31. 31.
    W. Zhao, B. Tong, J. Shi, Y. Pan, J. Shen, J. Zhi, W.K. Chan, Y. Dong, Langmuir 26, 16084–16089 (2010)CrossRefGoogle Scholar
  32. 32.
    F. Le Floch, J.-P. Simonato, G. Bidan, Electrochim. Acta 54, 3078–3085 (2009)CrossRefGoogle Scholar
  33. 33.
    B. Pandit, T. Luitel, D.R. Cummins, A.K. Thapa, T. Druffel, F. Zamborini, J. Liu, J. Phys. Chem. A 117, 13513–13523 (2013)CrossRefGoogle Scholar
  34. 34.
    G.D. Storrier, S.B. Colbran, D.C. Craig, J. Chem. Soc. Dalton Trans. 17, 3011–3028 (1997)CrossRefGoogle Scholar
  35. 35.
    L. Ma, B. Liu, P.-J.J. Huang, X. Zhang, J. Liu, Langmuir 32, 5672–5680 (2016)CrossRefGoogle Scholar
  36. 36.
    H.Y.B. Tong, W. Xiong, F. Xie, J. Shi, J. Zhi, W.K. Chan, Y. Dong, J. Phys. Chem. B 117, 5338–5344 (2013)CrossRefGoogle Scholar
  37. 37.
    W. Zhao, B. Tong, J. Zhi, Y. Pan, J. Shen, J. Shi, Y. Dong, Acta Phys.-Chim. Sin. 26, 822–826 (2010)Google Scholar
  38. 38.
    A. Nicolay, A. Lanzutti, M. Poelman, B. Ruelle, L. Fedrizzi, P. Dubois, M.G. Olivier, Appl. Surf. Sci. 327, 379–388 (2015)CrossRefGoogle Scholar
  39. 39.
    C. Agnès, J.-C. Arnault, F. Omnès, B. Jousselme, M. Billon, G. Bidan, P. Mailley, Phys. Chem. Chem. Phys. 11, 11647–11654 (2009)CrossRefGoogle Scholar
  40. 40.
    A. Gutierrez-Sosa, T. Evans, A. Woodhead, R. Lindsay, C. Muryn, G. Thornton, J. Yoshihara, S. Parker, C. Campbell, R. Oldman, Surf. Sci. 477, 1–7 (2001)CrossRefGoogle Scholar
  41. 41.
    R. Lindsay, E. Michelangeli, B.G. Daniels, T.V. Ashworth, A.J. Limb, G. Thornton, A. Gutiérrez-Sosa, A. Baraldi, R. Larciprete, S. Lizzit, J. Am. Chem. Soc. 124, 7117–7122 (2002)CrossRefGoogle Scholar
  42. 42.
    G. Liu, A. Klein, A. Thissen, W. Jaegermann, Surf. Sci 539, 37–48 (2003)CrossRefGoogle Scholar
  43. 43.
    A. Agnes, J.C. Arnault, F. Omnes, B. Jousselme, M. Billon, G. Bidan, P. Mailley, Phys. Chem. Chem. Phys. 11, 11647–11654 (2009)CrossRefGoogle Scholar
  44. 44.
    P. Wen, Y. Han, W. Zhao, Int. J. Photoenerg. 2012, 1–7 (2012)Google Scholar
  45. 45.
    M. Maestri, N. Armaroli, V. Balzani, E.C. Constable, A. Thompson, Inorg. Chem. 34, 2759–2767 (1995)CrossRefGoogle Scholar
  46. 46.
    A.C. Bhasikuttan, M. Suzuki, S. Nakashima, T. Okada, J. Am. Chem. Soc. 124, 8398–8405 (2002)CrossRefGoogle Scholar
  47. 47.
    Q.C. Sun, S. Mosquera-Vazquez, Y. Suffren, J. Hankache, N. Amstutz, L.M.L. Daku, E. Vauthey, A. Hauser, Coordin. Chem. Rev. 282, 87–99 (2015)CrossRefGoogle Scholar
  48. 48.
    S. Verma, P. Kar, A. Das, D.K. Palit, H.N. Ghosh, Chem. Eur. J 16, 611–619 (2010)CrossRefGoogle Scholar
  49. 49.
    G. Ramakrishna, D.A. Jose, D.K. Kumar, A. Das, D.K. Palit, H.N. Ghosh, J. Phys. Chem. B 109, 15445–15453 (2005)CrossRefGoogle Scholar
  50. 50.
    P. Kar, S. Verma, A. Das, H.N. Ghosh, J. Phys. Chem. C 113, 7970–7977 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Wenjuan Xiong
    • 1
  • Lihong Yu
    • 1
    • 2
  • Haiting Shi
    • 1
  • David L. Phillips
    • 1
  • Wai Kin Chan
    • 1
  1. 1.Department of ChemistryThe University of Hong KongHong KongHong Kong
  2. 2.School of Applied Chemistry and Biological TechnologyShenzhen PolytechnicShenzhenChina

Personalised recommendations