Advertisement

Synthesis of Poly(dichlorophosphazene) by the Melt Phase Polymerization of P-Trichloro-N-(dichlorophosphoryl)monophosphazene

  • Azzam S. Elayan
  • Christopher W. Allen
  • Eric S. Peterson
Communication
  • 147 Downloads

Abstract

A major barrier to commercialization of any of the many exciting applications of the poly(phosphazenes) has been the cost and ease of preparation of the most widely utilized starting polymer, poly(dichlorophosphazene) (Cl2PN)n (1). One attractive route is the thermal polycondensation reaction of P-trichloro-N-(dichlorophosphoryl)monophosphazene, Cl3P=N–P(O)Cl2 (2). We are reporting a modified bulk polymerization of 2 which represents a convenient route to laboratory scale amounts of (NPCl2)n with moderate molecular weights and polydispersity. GPC characterization data were obtained on the corresponding phenoxy derivatives, [(PhO)2PN]n. We also have developed a one pot synthesis of 1 from ammonium sulfate and phosphorus pentachloride which are the starting materials for the synthesis of 2 and examined the major variables, time and temperature, for this process. The resulting poly(phosphazene) exhibits more branching than the product of bulk polymerization of 1.

Keywords

Poly(dichlorophosphazene) P-trichloro-N-(dichlorophosphoryl)monophosphazene Melt phase synthesis 

Notes

Acknowledgements

This work was supported by the Idaho National Engineering Lab University Research Consortium for the US Department of Energy under Contract No. DE-AC07-941D13223. Partial support from the National Science Foundation under the Vermont EPSCoR program is also gratefully acknowledged.

References

  1. 1.
    H.R. Allcock, Chemistry and Applications of Polyphosphazenes. (Wiley, Hoboken, 2003)Google Scholar
  2. 2.
    P. Wisian-Neilson, Phosphazenes for Biomedical Applications, ed. by A.K. Andrianov 155(2009)Google Scholar
  3. 3.
    H.R. Allcock, R.L. Kugel and K.J. Valan, Inorg. Chem. 5, 1709 (1966)CrossRefGoogle Scholar
  4. 4.
    R. De Jaeger and M. Gleria, Progr. Polym. Sci. 23, 179 (1998)CrossRefGoogle Scholar
  5. 5.
    A.N. Mujumdar, S.G. Young, R.L. Merker and J.H. Magill, Macromolecules 23, 14 (1990)CrossRefGoogle Scholar
  6. 6.
    H.R. Allcock, in Ambient Temperature Cationic Condensation Synthesis of Polyphosphazenes In: ed. by M. Geleria, R. De Jaeger Synthesis and Characterization of Poly(organophazenes) (Nova Science, New York, 2004), p. 49Google Scholar
  7. 7.
    H.R. Allcock, Appl. Organometal. Chem 27, 620 (2013)CrossRefGoogle Scholar
  8. 8.
    Bang, Macromolecules 38, 643 (2005)CrossRefGoogle Scholar
  9. 9.
    G.A. Carriedo, F.J. Garcia Alonso, P. Gomez-Elipe, J.I. Fidalgo, J.L. Garcia Alvarez and A. Preasa-Soto, Chem. Eur. J. 9, 3833 (2003)CrossRefGoogle Scholar
  10. 10.
    G. D’Haullin, R. De Jaeger, J.P. Chambrette and P. Potin, Macromolecules 25, 1254 (1992)CrossRefGoogle Scholar
  11. 11.
    P. Potin and R. De Jaeger Phosphorus, Sulfur Silicon 76, 227(1993)CrossRefGoogle Scholar
  12. 12.
    R. De Jaeger and P. Potin Poly(Dichlorophsphazene) from P-Trichloro-N-(dichlorophosphoryl)monophosphazene, Cl2P(0) = NPCl3, ed. by M. Geleria, R. De Jaeger, In: Synthesis and Characterization of Poly(organophazenes) (Nova Science, New York, 2004), p. 25Google Scholar
  13. 13.
    C.W. Allen and A.S. Hneihen Phosphorus Sulfur Silicon, 144–146, 213 (1999)CrossRefGoogle Scholar
  14. 14.
    E.S. Peterson, T.A. Luther, M.K. Harrup, J.R. Klaehn, M.L. Stone, C.J. Orme and F.F. Stewart, J. Inorg. Organomet. Polym. Mater. 2007, 361 (2007)CrossRefGoogle Scholar
  15. 15.
    C.W. Allen, A.Z. Hneihen and E.S. Peterson Solid State Synthesis of Poly(dichlorophosphazene) U.S. Patent 6,309,619, Bechtel BWXT Idaho LLC, 30 Oct 2001Google Scholar
  16. 16.
    J. Emsley and P.B. Udy J. Chem. Soc. A 2863 (1971)Google Scholar
  17. 17.
    R. DeJaeger, G. D’Halluin, G. Pagniez and P Potin, Polycondensation of impure P2NOCL5 into uncrosslinked poly(dichlorophosphazenes) in the Presence of PCl5, U.S patent # 5,132,389, Atochem, Puteaux, France, 21 Jul 1992Google Scholar
  18. 18.
    (15NH4)2SO4 (98%+ 15N) is available from Cambridge Isotope Lsaboratories.Google Scholar
  19. 19.
    T.L. Luther, F.F. Stewart, J.L. Budzien, R.A. LaViolette, W.F. Brauer, M.K. Harrup, C.W. Allen and E. Elayan J. Phys. Chem. B. 107, 3168 (2003).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Azzam S. Elayan
    • 1
    • 2
  • Christopher W. Allen
    • 1
  • Eric S. Peterson
    • 3
  1. 1.Department of ChemistryUniversity of VermontBurlingtonUSA
  2. 2.Department of Chemistry and PhysicsMonmouth UniversityWest Long BranchUSA
  3. 3.Idaho National LaboratoryIdaho FallsUSA

Personalised recommendations