Skip to main content
Log in

Cu and Ag Nanoparticles Films Deposited on Glass Substrate Using Cold Cathode Ion Source

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Structural, electrical and optical properties of Cu and Ag nanoparticles thin films deposited on glass substrates prepared by sputtering were investigated. Cold cathode ion source used for sputtered of copper and silver targets to deposit nanoparticles thin films on glass substrate using argon gas. X-ray diffraction was used to study the structure and the grain size of thin film which reveals that average grain size is in nano region. Copper nanoparticles was in rang 14 nm and silver nanoparticles size was 20 nm in first peak using Scherrer’s method. The electrical resistivities of copper and silver thin films were also investigated. The thin film resistance Rs of Cu and Ag equals 1.33 and 6.35 Ω respectively. I-V characteristics of thin films were recorded at room temperature and are found to be linear. Optical properties of the synthesized materials are studied by UV–Vis in the wavelength range 200–800 nm. The calculated band gap for the Cu thin film on glass are estimated to be EgCu = 2.18 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Y. Fu, G. Li, M. Tian, X. Wang, L. Zhang, W. Wang, J. Appl. Polymer Sci. 131, 39859 (2014)

    Google Scholar 

  2. A.F. de Faria, D.S. Martinez, S.M.M. Meira, A.C.M. de Moraes, A. Brandelli, A.G.S. Filho, O.L. Alves, Colloid Surf. B 113, 115 (2014)

    Article  Google Scholar 

  3. O. Akhavan, E. Ghaderi, Curr. Appl. Phys. 9, 1381 (2009)

    Article  Google Scholar 

  4. A.L.C.M. da Silva, M.G. Gutierres, A. Thesing, R.M. Lattuada, J. Ferreira, J. Braz, Chem. Soc. 25, 928 (2014)

    Google Scholar 

  5. Q. Wang, H. Yu, L. Zhong, J. Liu, J. Sun, J. Shen, Chem. Mater. 18, 1988 (2006)

    Article  CAS  Google Scholar 

  6. L. Juan, Z. Zhimin, M. Anchun, L. Lei, Z. Jingchao, Int. J. Nanomed. 5, 261 (2010)

    Article  Google Scholar 

  7. B.A. Akgun, A.W. Wren, C. Durucan, M.R. Towler, N.P. Mellott, J. Sol Gel Sci. Technol. 59, 228 (2011)

    Article  CAS  Google Scholar 

  8. E. Hariprasad, T.P. Radhakrishnan, ACS Catal. 2, 1179 (2012)

    Article  CAS  Google Scholar 

  9. N. Nilius, T. Risse, S. Schauermann, S. Shaikhutdinov, M. Sterrer, H.-J. Freund, Top. Catal. 54, (2011)

  10. P.C. Angelomé, L.M. Liz-Marzán, J. Sol-Gel Sci. Technol. 70, 180 (2014)

    Article  Google Scholar 

  11. E. Dinda, M.H. Rashid, M. Biswas, T.K. Mandal, Langmuir 26, 17568 (2010)

    Article  CAS  Google Scholar 

  12. M.P. Brandon, D.M. Ledwith, J.M. Kelly, J. Colloid Interface Sci. 415, 77 (2014)

    Article  CAS  Google Scholar 

  13. J. Ye, K. Bonroy, D. Nelis, F. Frederix, J. D’Haen, G. Maes, G. Borghs, Colloid Surf. A 321, 313 (2008)

    Article  CAS  Google Scholar 

  14. Y. Lee, K. Koh, H. Na, K. Kim, J.-J. Kang, J. Kim, Nanoscale Res. Lett. 4, 364 (2009)

    Article  CAS  Google Scholar 

  15. J.L. Wu, F.C. Chen, Y.S. Hsiao, F.C. Chien, P. Chen, C.H. Kuo, M.H. Huang, C.S. Hsu. ACS Nano 5, 959 (2011)

    Article  CAS  Google Scholar 

  16. S. Mubeen, G. Hernandez-Sosa, D. Moses, J. Lee, M. Moskovits, Nano Lett. 11, 5548 (2011)

    Article  CAS  Google Scholar 

  17. A.P. Kulkarni, K.M. Noone, K. Munechika, S.R. Guyer, S.D. Ginger, Nano Lett. 10, 1501 (2010)

    Article  CAS  Google Scholar 

  18. Y. Kobayashi, T. Maeda, Y. Yasuda, T. Morita, Appl. Nanosci. 6, 883–893 (2016)

    Article  CAS  Google Scholar 

  19. K. Mech, R. Kowalik, P. Żabinski, Archiv. Metal. Mater. 56, 903–908 (2011)

    CAS  Google Scholar 

  20. N.M. Deraz, Int. J. Electrochem. Sci. 8, 5213–5222 (2013)

    CAS  Google Scholar 

  21. C.J. Flytzanis, Physics B At. Mol. Opt. Phys. 38, S661 (2005)

    Article  CAS  Google Scholar 

  22. K. Yliniemi, M. Vahvaselka, Y. van Ingelgem, K. Baert, B.P. Wilson, H. Terryn, K. Kontturi, J. Mater. Chem. B 18, 199 (2008)

    Article  CAS  Google Scholar 

  23. K. Yliniemi, P. Ebbinghaus, P. Keil, K. Kontturi, G. Grundmeier, Surf. Coat. Technol. 201, 7865 (2007)

    Article  CAS  Google Scholar 

  24. W. Li, S. Seal, E. Megan, J. Ramsdell, K. Scammon, G. Legon, L. Lachal, K.A. Richardson, J. Appl. Phys. 93, 9553 (2003)

    Article  CAS  Google Scholar 

  25. A. Babapour, O. Akhavan, R. Azimirad, A.Z. Moshfegh, Nanotechnology 17, 763 (2006)

    Article  CAS  Google Scholar 

  26. J.L. Lu, J. Weissenrieder, S. Kaya, H.J. Gao, S. Shaikhutdinov, H.J. Freund, Surf. Rev. Lett. 14, 927 (2007)

    Article  CAS  Google Scholar 

  27. R. Bernardo-Gavito, A. Serrano, M.A. García, R. Miranda, D. Granados, J. Appl. Phys. 114, 164312 (2013)

    Article  Google Scholar 

  28. U.M. Bhatta, D. Khushalani, P.V. Satyam, Bull. Mater. Sci. 34, 595 (2011)

    Article  CAS  Google Scholar 

  29. T. Karakouz, B.M. Maoz, G. Lando, A. Vaskevich, I. Rubinstein, ACS Appl. Mater. Interfaces 3, 978 (2011)

    Article  CAS  Google Scholar 

  30. K.C. Grabar, R.G. Freeman, M.B. Hommer, M.J. Natan, Anal. Chem. 67, 735 (1995)

    Article  CAS  Google Scholar 

  31. E.D. Gaspera, M. Karg, J. Baldauf, J. Jasieniak, G. Maggioni, A. Martucci, Langmuir 27, 13739 (2011)

    Article  Google Scholar 

  32. D.R. Gibson, I.T. Brinkley, E.M. Waddell, Soc. Vacuum Coater 151, 856 (2008)

    Google Scholar 

  33. A. Attri, A. Kumar, S. Verma, S. Ojha, K. Asokan, L. Nair, Nanoscale Res. Lett. 8, 433 (2013)

    Article  Google Scholar 

  34. M.A.M. Khan, S. Kumar, M. Ahamed, S.A.A. Mohammad, S. AlSalhi, Nanoscale Res. Lett. 6, 434 (2011)

    Article  Google Scholar 

  35. A. Paul, J. Wingbermuhle, Appl. Surf. Sci. 252, 8151–8155 (2006)

    Article  CAS  Google Scholar 

  36. M. Jose, R. Thanal, J. Prince Joshua, S.A. Martin Britto Dhas, S. Jerome Das, Superlattices Microstruct. 89, 68–74 (2016)

    Article  CAS  Google Scholar 

  37. M. Jose, M. Sakthivel, Mater. Lett. 117, 78–81 (2014)

    Article  CAS  Google Scholar 

  38. A. Sakthisabarimoorthi, M. Jose, S.A. Martin Britto Dhas, S. Jerome Das, J. Mater. Sci. Mater. Electron. (2016). doi:10.1007/s10854-016-6090-0

    Google Scholar 

  39. O. Rocha-Rocha, M. Cortez-Valadez, A.R. Hernández-Martínez, R. Gámez-Corrales, R.A.B. Alvarez, R. Britto-Hurtado, Y. Delgado-Beleño, C.E. Martinez-Nuñez, A. Pérez-Rodríguez, H. Arizpe-Chávez, M. Flores-Acosta, J. Electron. Mater. doi:10.1007/s11664-016-4942-2

  40. J.G. Bocarando-Chacon, M. Cortez-Valadez, D. Vargas azquez et al., Phys. E 59, 15–18 (2014)

    Article  CAS  Google Scholar 

  41. M. Cortez-Valadez, J.-G. Bocarando-Chacon, A.R. Hernández-Martínez et al., Nanosci. Nanotechnol. Lett. 6, 580–583 (2014)

    Article  CAS  Google Scholar 

  42. N. Mat Zain, A.G.F. Stapley, G. Shama, Carbohydr. Polym. 112, 195–202 (2014)

    Article  Google Scholar 

  43. L. He et al., Nanotechnology 19, 445–610 (2008)

    Google Scholar 

  44. M.S. Merchant, S.H. Kang, M. Sanganeria, JOM 53, 43–48 (2001)

    Article  CAS  Google Scholar 

  45. B. Kucharska, E. Kulej, Archiv. Metall. Mater. 55, 45 (2010)

    CAS  Google Scholar 

  46. A. Zendehnam, B. Farokhi, N. Beiranvand, S. Miri, Int. J. Thin Film Sci. Tec. 2(3), 181–194 (2013)

    Article  Google Scholar 

  47. P. Tyagi, A.G. Vedeshwar, Bull. Mater. Sci. 24, 297–300 (2001)

    Article  CAS  Google Scholar 

  48. M. Vopsaroiu, M.J. Thwaitesa, J.G.V. Fernandez, Optoelectron. Advanc. Mater. 7, 2713–2720 (2005)

    CAS  Google Scholar 

  49. A.M. Abdel Reheem, M.M. Ahmed, M.M. Abdelhamid, A.H. Ashour, Rev. Sci. Instrum. 87, 083302 (2016)

    Article  CAS  Google Scholar 

  50. S.S. Nath, D. Chakdar, G. Gope, D.K. Avasthi, J. Nanotechnol. 4, 1–6 (2008)

    Google Scholar 

  51. H. Wei, H. Eilers, Thin Solid Films 517, 575–581 (2008)

    Article  CAS  Google Scholar 

  52. K.L. Chopra, in Thin Film Phenomena. (MC Graw Hill Co., New York, 1969)

    Google Scholar 

  53. G.P. Panta, D P. Subedi, Kathmandu University, J. Sci. Eng. Technol. 8, 31–36 (2012)

    Google Scholar 

  54. J. Tauc, in Optical properties of solids, ed. by F. Abeles (North Holland, Amsterdam, 1970), p. 903

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Shehata.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shehata, M.M., Abdelreheem, A.M., Waly, S.A. et al. Cu and Ag Nanoparticles Films Deposited on Glass Substrate Using Cold Cathode Ion Source. J Inorg Organomet Polym 27, 720–727 (2017). https://doi.org/10.1007/s10904-017-0515-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-017-0515-y

Keywords

Navigation