Photosensitization and photocurrent switching effects in wide band gap semiconductors: CuI and TiO2 functionalized with iron and nickel complexes: from semiconductors to logic devices

Article

Abstract

Materials obtained by immobilization of nickel and iron complexes on the surface of n-type titanium dioxide and p-type copper iodide have interesting photoelectrochemical properties. Fe(NA)Cl2@TiO2, Fe(NA)Cl2@CuI, Ni-rutin@CuI and Ni-rutin@TiO2 exhibit pronounced photosensitization towards visible light and photoelectrodes prepared from these materials generate photocurrents over a broad light wavelength window. The polarity of the generated photocurrents varies with change of the applied potential. Photocurrent switching phenomena can be described in terms of photoinduced charges transfer involving semiconductor and excited metal complex. Various types of interaction between semiconductor and adsorbed complex reflected in different mechanism of photosensitization. The studied materials has been characterized using various spectroscopic, crystallographic and electrochemical methods. Based on the photochemical measurements and diffuse reflectance spectroscopy the mechanism of photosensitization as well as mechanism of photocurrent generation in various conditions have been suggested. Due to interesting photoelectrochemical properties, studied materials are promising for optoelectronic logic devices such as demultiplexer. Studied materials are particularly attractive due to high stability and photostability.

Keywords

Semiconducting materials Optoelectronics Titanium dioxide Copper iodide Metal complex photosensitizers 

Notes

Acknowledgements

Authors are grateful to SajTom Light Future for financial support. We thank Overlack Sp. z o.o. for TiO2 sample.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10904_2016_484_MOESM1_ESM.docx (1.2 mb)
Supplementary material 1 (DOCX 1181 KB)

References

  1. 1.
    Y.-J. Kim, J. Kim, Y.S. Kim, J.-K. Lee, Org. Electron 14, 3406 (2013)CrossRefGoogle Scholar
  2. 2.
    S. Gawęda, A. Podborska, W. Macyk, K. Szaciłowski, Nanoscale 1, 299 (2009)CrossRefGoogle Scholar
  3. 3.
    M. Hebda, G. Stochel, K. Szaciłowski, W. Macyk, J. Phys. Chem. B 110, 15275 (2006)CrossRefGoogle Scholar
  4. 4.
    A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Chem. Rev. 110, 6595 (2010)CrossRefGoogle Scholar
  5. 5.
    T. Baran, W. Macyk, J. Photochem. Photobiol. Chem. 241, 8 (2012)CrossRefGoogle Scholar
  6. 6.
    A. Kumar, P. Kumar, S. Paul, S.L. Jain, Appl. Surf. Sci 386, 103 (2016)CrossRefGoogle Scholar
  7. 7.
    M. Pastore, F. De Angelis, J. Am. Chem. Soc. 137, 5798 (2015)CrossRefGoogle Scholar
  8. 8.
    M. Aresta, A. Dibenedetto, T. Baran, A. Angelini, P. Labuz, W. Macyk, Beilstein. J. Org. Chem 10, 2556 (2014)Google Scholar
  9. 9.
    H. Kisch, Angew. Chem. Int. Ed 52, 812 (2013)CrossRefGoogle Scholar
  10. 10.
    A. Ajmal, I. Majeed, R.N. Malik, H. Idriss, M.A. Nadeem, RSC Adv. 4, 37003 (2014)CrossRefGoogle Scholar
  11. 11.
    M. Buchalska, J. Kuncewicz, E. Świętek, P. Łabuz, T. Baran, G. Stochel, W. Macyk, Coord. Chem. Rev. 257, 767 (2013)Google Scholar
  12. 12.
    T. Suksrichavalit, S. Prachayasittikul, T. Piacham, C. Isarankura-Na-Ayudhya, C. Nantasenamat, V. Prachayasittikul, Molecules 13, 3040 (2008)CrossRefGoogle Scholar
  13. 13.
    K.L. Rahman, M.A. Mamun, M.Q. Ehsan, Russ. J. Inorg. Chem. 56, 1436 (2011)Google Scholar
  14. 14.
    S. Selvaraj, S. Krishnaswamy, V. Devashya, S. Sethuraman, U. M. Krishnan, RSC Adv. 2, 2797 (2012)CrossRefGoogle Scholar
  15. 15.
    J. Li, E. Yue, L. Lian, W. Ma, Int. J. Hydrog. Energy 38, 10746 (2013)CrossRefGoogle Scholar
  16. 16.
    J.A. Rengifo-Herrera, M.N. Blanco, M.M. Fidalgo de Cortalezzi, L.R. Pizzio, Mater. Res. Bull. 83, 360 (2016)CrossRefGoogle Scholar
  17. 17.
    J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D.W. Bahnemann, Chem. Rev. 114, 9919 (2014)CrossRefGoogle Scholar
  18. 18.
    A. Fujishima, T.N. Rao, D.A. Tryk, J. Photochem. Photobiol. C Photochem. Rev. 1, 1 (2000)Google Scholar
  19. 19.
    V.P.S. Perera and K. Tennakone, Sol. Energy Mater. Sol. Cells 79, 249 (2003)CrossRefGoogle Scholar
  20. 20.
    T. Baran, S. Wojtyła, A. Dibenedetto, M. Aresta, W. Macyk, ChemSusChem 9, 2933 (2016)CrossRefGoogle Scholar
  21. 21.
    G. Ashkenasy, D. Cahen, R. Cohen, A. Shanzer, A. Vilan, Acc. Chem. Res. 35, 121 (2002)CrossRefGoogle Scholar
  22. 22.
    K. Szaciłowski, W. Macyk, Chim. Int. J. Chem. 61, 831 (2007)CrossRefGoogle Scholar
  23. 23.
    W. Macyk, G. Stochel, and K. Szaciłowski, Chem. Eur. J. 13, 5676 (2007)CrossRefGoogle Scholar
  24. 24.
    L.F.O. Furtado, A.D.P. Alexiou, L. Gonçalves, H.E. Toma, K. Araki, Angew. Chem. Int. Ed 45, 3143 (2006)CrossRefGoogle Scholar
  25. 25.
    A.F. Nogueira, L.F.O. Furtado, A.L.B. Formiga, M. Nakamura, K. Araki, H.E. Toma, Inorg. Chem 43, 396 (2004)CrossRefGoogle Scholar
  26. 26.
    M. Oszajca, K. McCall, N. Robertson, K. Szaciłowski, J. Phys. Chem. C 115, 12187 (2011)CrossRefGoogle Scholar
  27. 27.
    A.M. Roy, G.C. De, N. Sasmal, S.S. Bhattacharyya, Int. J. Hydrog. Energy 20, 627 (1995)CrossRefGoogle Scholar
  28. 28.
    L.D. Taylor, J. Org. Chem. 27, 4064 (1962)CrossRefGoogle Scholar
  29. 29.
    F.A. Al-Saif, M.S. Refat, J. Mol. Struct. 1021, 40 (2012)CrossRefGoogle Scholar
  30. 30.
    P. Koczoń, J.C. Dobrowolski, W. Lewandowski, A.P. Mazurek, J. Mol. Struct. 655, 89 (2003)CrossRefGoogle Scholar
  31. 31.
    M. Mohammadikish, F. Davar, M.R. Loghman-Estarki, and Z. Hamidi, Ceram. Int. 39, 3173 (2013)CrossRefGoogle Scholar
  32. 32.
    F. Davar, M. Mohammadikish, M.R. Loghman-Estarki, Z. Hamidi, CrystEngComm 14, 7338 (2012)CrossRefGoogle Scholar
  33. 33.
    J. Tauc, Mater. Res. Bull. 3, 37 (1968)CrossRefGoogle Scholar
  34. 34.
    R. Beranek, Adv. Phys. Chem. 2011, e786759 (2011)CrossRefGoogle Scholar
  35. 35.
    T. Baran, S. Wojtyła, A. Dibenedetto, M. Aresta, W. Macyk, ChemSusChem 9, 2933–2938 (2016)CrossRefGoogle Scholar
  36. 36.
    J.C. Cardoso and M.V.B. Zanoni, Sep. Sci. Technol. 45, 1628 (2010)CrossRefGoogle Scholar
  37. 37.
    T. Baran, S. Wojtyła, C. Lenardi, A. Vertova, P. Ghigna, E. Achilli, M. Fracchia, S. Rondinini, A. Minguzzi, ACS Appl. Mater. Interfaces 8, 21250 (2016)CrossRefGoogle Scholar
  38. 38.
    T. Sakata, K. Hashimoto, M. Hiramoto, J. Phys. Chem. 94, 3040 (1990)CrossRefGoogle Scholar
  39. 39.
    M. Buchalska, P. Łabuz, Ł.G. Bujak, Szewczyk, T. Sarna, S. Maćkowski, W. Macyk, Dalton Trans 42, 9468 (2013)CrossRefGoogle Scholar
  40. 40.
    R. Sánchez-de-Armas, J. Oviedo, M.Á. San Miguel, J.F. Sanz, J. Phys. Chem. C 115, 11293 (2011)CrossRefGoogle Scholar
  41. 41.
    F. De Angelis, Chem. Phys. Lett. 493, 323 (2010)CrossRefGoogle Scholar
  42. 42.
    A. Vvedenskii, S. Grushevskaya, S. Ganzha, S. Maksimova, Surf. Interface Anal. 42, 941 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.SajTom Light Future LTDCzaniecPoland
  2. 2.Department of ChemistryUniversity of MilanMilanItaly

Personalised recommendations