Skip to main content

Advertisement

Log in

Hydrogen Storage Behaviors by Adsorption on Multi-Walled Carbon Nanotubes

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In the present study, MWCNTs were synthesized through CVD method, employing CH4 as carbon source over Co-Mo/MgO nanocatalyst at a temperature of 1000 °C and then treated by two methods. First by KOH activation (A-MWCNTs), with a weight ratio of KOH: MWCNTs = 3:1 at 900 °C in He atmosphere and second treated by H2SO4: HNO3 = 3:1 (F-MWCNTs). MWCNT samples were characterized by FE-SEM, TEM, XRD, FT-IR, BET and Raman spectroscopy. The adsorption of H2 gas was performed using volumetric method. Various parameters on adsorption of H2 including surface defects, surface areas, pore characteristics and functional groups have been investigated. Furthermore, it was found that the hydrogen adsorption of P-MWCNTs, A-MWCNTs and F-MWCNTs were 0.67, 1.24 and 0.40 wt%, respectively at room temperature (298 K) while the pressure varied from 0 to 34 bar. The results indicated a considerable rise in the H2 adsorption capacity of A-MWCNTs (85%), due possibly to the high surface area and enhanced micro-pore volume and the defects formed on the surface sites of MWCNTs by KOH activation. In this case, hydrogen molecules adsorption on the defective cavities could have a significant role through van der walls forces. Therefore, it can be concluded that KOH-modified MWCNTs is one of the most significant ways of developing the textural characteristic and improving hydrogen storage properly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. R. Orinakova, A. Orinak, Recent applications of carbon nanotubes in hydrogen production and storage. Fuel 90, 3123–3140 (2011)

    Article  CAS  Google Scholar 

  2. M. Fichtner, Nanotechnological aspects in materials for hydrogen storage. Adv. Eng. Mater. 7, 443–455 (2005)

    Article  CAS  Google Scholar 

  3. Ş. Ţălu, S. Solaymani, M. Bramowicz, N. Naseri, S. Kulesza, A. Ghaderi, Surface micromorphology and fractal geometry of Co/CP/X (X = Cu, Ti, SM and Ni) nanoflake electrocatalysts. RSC Adv. 6, 27228–27234 (2016)

    Article  Google Scholar 

  4. S. Stach, Ż.Ş. Garczyk, Ţălu, S. Solaymani, A. Ghaderi, R. Moradian, B. Nezafat Negin, S.M. Elahi, H. Gholamali, Stereometric parameters of the Cu/Fe NPs thin films. J. Phys. Chem. C 119, 17887–17898 (2015)

    Article  CAS  Google Scholar 

  5. T. Ghodselahi, S. Solaymani, M. Akbarzadeh Pasha, M.A. Vesaghi, Ni nanoparticle catalyzed growth of MWCNTs on Cu NPs @ a-C:H substrate. Eur. Phys. J. D. 66, 299 (2012)

    Article  Google Scholar 

  6. Ş. Ţălu, M. Bramowicz, S. Kulesza, S. Solaymani, A. Ghaderi, L. Dejam, A. Boochani, S.M. Elahi, Microstructure and micromorphology of ZnO thin films: case study on Al doping and annealing effects. Superlattices Microstruct. 93, 109–121 (2016)

    Article  Google Scholar 

  7. B.J. Kim, Y.S. Lee, S.J. Park, Novel porous carbons synthesized from polymeric precursors for hydrogen storage. Int. J. Hydrogen Energ. 33, 2254–2259 (2008)

    Article  CAS  Google Scholar 

  8. J.S. Im, J. Yun, S.C. Kang, S.K. Lee, Y.S. Lee, Hydrogen adsorption on activated carbon nanotubes with an atomic-sized vanadium catalyst investigated by electrical resistance measurements. Appl. Surf. Sci. 258, 2749–2756 (2012)

    Article  CAS  Google Scholar 

  9. S.Y. Lee, S.J. Park, Influence of the pore size in multi-walled carbon nanotubes on the hydrogen storage behaviors. J. Solid State Chem. 194, 307–312 (2012)

    Article  CAS  Google Scholar 

  10. E. Raymundo-Pinero, P. Azais, T. Cacciaguerra, D. Cazorla-Amoro´s, A. Linares-Solano, F. Be´guin, KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organization. Carbon 43, 786–795 (2005)

    Article  CAS  Google Scholar 

  11. A.J. Lachawiec Jr., G. Qi, R.T. Yang, Hydrogen storage in nanostructured carbons by spillover: bridge-building enhancement. Langmuir 21, 11418–11424 (2005)

    Article  CAS  Google Scholar 

  12. E.K. Chastain, J.M. Andre´sen, Physical activation of multiwalled carbon nanotubes for hydrogen storage. Preprint Paper Am. Chem. Soc. Div. Fuel Chem. 49, 688–689 (2004)

    Google Scholar 

  13. J. Hayashi, T. Horikawa, K. Muroyama, V.G. Gomes, Activated carbon from chickpea husk by chemical activation with K2CO3: preparation and characterization. Micropor. Mesopor. Mat. 55, 63–68 (2002)

    Article  CAS  Google Scholar 

  14. N. Yoshizawa, K. Maruyama, Y. Yamada, E. Ishikawa, M. Kobayash, Y. Toda et al., XRD evaluation of KOH activation process and influence of coal rank. Fuel 81, 1717–1722 (2002)

    Article  CAS  Google Scholar 

  15. T. Yang, A.C. Lua, Characteristics of activated carbons prepared from pistachio-nut shells by potassium hydroxide activation. Micropor. Mesopor. Mat. 63, 113–124 (2003)

    Article  CAS  Google Scholar 

  16. J. Díaz-Terán, D.M. Nevskaia, J.L.G. Fierro, A.J. López-Peinado, A. Jerez, Study of chemical activation process of a lignocellulosic material with KOH by XPS and XRD. Micropor. Mesopor. Mat. 60, 173–181 (2003)

    Article  Google Scholar 

  17. H.B. Wu, P. Chen, J. Lin, K.L. Tan, Hydrogen uptake by carbon nanotubes. Int. J. Hydrogen Energ. 25, 261–265 (2000)

    Article  CAS  Google Scholar 

  18. Sh. Dhall, N. Jaggi, R. Nathawat, Functionalized multiwalled carbon nanotubes based hydrogen gas sensor. Sens. Actuators A 201, 321–327 (2013)

    Article  CAS  Google Scholar 

  19. A.M. Rashidi, M.M. Akbarnejad, A.A. Khodadadi, Y. Mortazavi, A. Ahmadpour, Single-wall carbon nanotubes synthesized using organic additives to Co-Mo catalysts supported on nanoporous MgO. J. Nanotechnol. 18, 315605 (2007)

    Article  Google Scholar 

  20. A.M. Rashidi, A. Nouralishahi, A.A. Khodadadi, Y. Mortazavi, A. Karimi, K. Kashefi, Modification of single wall carbon nanotubes (SWNT) for hydrogen storage. Int. J. Hydrogen Energ. 35, 9489–9495 (2010)

    Article  CAS  Google Scholar 

  21. V. Datsyuk, M. Kalyva, K. Papagelis, J. Parthenios, D. Tasis, A. Siokou, I. Kallitsis, C. Galiotis, Chemical oxidation of multiwalled carbon nanotubes. Carbon 46, 833–840 (2008)

    Article  CAS  Google Scholar 

  22. H. Hiura, T.W. Ebbesen, K. Tanigaki, Raman studies of carbon nanotubes. Chem. Phys. Lett. 202, 509–512 (1993)

    Article  CAS  Google Scholar 

  23. J.P. Tessonnier, D. Rosenthal, T.W. Hansen, C. Hess, M.E. Schuster, R. Blume, F. Girgsdies, N.P. Der, O. Timpe, D.S. Su, R. Schlogl, Analysis of the structure and chemical properties of some commercial carbon nanostructures. Carbon 47, 1779–1798 (2009)

    Article  CAS  Google Scholar 

  24. S. Aftaba, S.T. Hussainb, M. Siddiquea, H. Nawaza, Comprehensive study of trends in the functionalization of CNTs using same oxidizing acids in different conditions. Der. Pharma. Chemica. 2, 354–365 (2010)

    Google Scholar 

  25. A. Dandekar, R.T.K. Baker, M.A. Vannice, Characterization of activated carbon, graphitized carbon fibers and synthetic diamond powder using TPD and DRIFTS. Carbon 36, 1821–1831 (1998)

    Article  CAS  Google Scholar 

  26. R.W. James, X-Ray Crystallography, 5th edn. (Willy, New York, 1961)

    Google Scholar 

  27. N.B. Colthup, L.H. Daly, S.E. Wiberlay, Introduction to Infrared and Raman Spectroscopy. (Academic Press, Boston, 1990)

    Google Scholar 

  28. M. Holzinger, O. Vostrovsky, A. Hirsch, F. Hennrich, M. Kappes, R. Weiss et al., Sidewall functionalization of carbon nanotubes. Angew. Chem. Int. Edit 40, 4002–4005 (2001)

    Article  CAS  Google Scholar 

  29. U.J. Kim, C.A. Furtado, X. Liu, G. Chen, P.C. Eklund, Raman and IR spectroscopy of chemically processed single-walled carbon nanotubes. J. Am. Chem. Soc. 127, 15437–15445 (2005)

    Article  CAS  Google Scholar 

  30. A. Kuznetsova, D. Douglas, V. Namneko, J.T. Yates Jr., J. Liu, R.E. Smalley, Enhancement of adsorption inside of singlewalled nanotubes: opening the entry ports. Chem. Phys. Lett. 321, 292–296 (2000)

    Article  CAS  Google Scholar 

  31. R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Properties of Carbon Nanotubes. (Imperial College Press, London, 1999), pp. 183–184

    Google Scholar 

  32. M.A. Díaz-Díez, V. Gómez-Serrano, C. Fernández González, E.M. Cuerda-Correa, A. Macías-García, Porous texture of activated carbons prepared by phosphoric acid activation of woods. Appl. Surf. Sci. 238, 309–313 (2004)

    Article  Google Scholar 

  33. K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquérol, T. Siemieniewska, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 57, 603–619 (1985)

    Article  CAS  Google Scholar 

  34. S.U. Rather, R. Zacharia, M.U.D. Naik, S.W. Hwang, A.R. Kim, K.S. Nahm, Surface adsorption and micropore filling of the hydrogen in activated MWCNTs. Int. J. Hydrogen Energ. 33, 6710–6718 (2008)

    Article  CAS  Google Scholar 

  35. R. Jabari Seresht, M. Jahanshahi, A.M. Rashidi, A.A. Ghoreyshi, Synthesize and characterization of graphene nanosheets with high surface area and nano-porous structure. Appl. Surf. Sci. 276, 672–681 (2013)

    Article  CAS  Google Scholar 

  36. S.J. Yang, H. Jung, T. Kim, C.R. Park, Recent advances in hydrogen storage technologies based on nanoporous carbon materials. Prog. Nat. Sci. 22, 631–638 (2012)

    Article  Google Scholar 

  37. C. Amorim, M.A. Keane, Effect of surface acid groups associated with amorphous and structured carbon on the catalytic hydrodechlorination of chlorobenzenes. J. Chem. Technol. Biot. 83, 662–672 (2008)

    Article  CAS  Google Scholar 

  38. K.M. Thomas, Hydrogen adsorption and storage on porous materials. Catal Today 120, 389–398 (2007)

    Article  CAS  Google Scholar 

  39. A. Reyhani, S.Z. Mortazavi, A.Z. Moshfegh, A. Nozad Golikand, M. Amiri, Enhanced electrochemical hydrogen storage by catalytic Fe-doped multi-walled carbon nanotubes synthesized by thermal chemical vapor deposition. J. Power Sources 188, 404–410 (2009)

    Article  CAS  Google Scholar 

  40. S.J. Park, S.Y. Lee, Hydrogen storage behaviors of platinum-supported multi-walled carbon nanotubes. Int. J. Hydrogen Energ. 35, 13048–13054 (2010)

    Article  CAS  Google Scholar 

  41. Y.Y. Fan, A. Kaufmann, A. Mukasyan, A. Varma, Single-and multi-wall carbon nanotubes produced using the floating catalyst method: Synthesis, purification and hydrogen up-take. Carbon 44, 2160–2170 (2006)

    Article  CAS  Google Scholar 

  42. C.H. Chen, C.C. Huang, Hydrogen storage by KOH-modified multi-walled carbon nanotubes. Int. J. Hydrogen Energ. 32, 237–246 (2007)

    Article  CAS  Google Scholar 

  43. S.Y. Lee, S.J. Park, Effect of temperature on activated carbon nanotubes for hydrogen storage behaviors. Int. J. Hydrogen Energ. 35, 6757–6762 (2010)

    Article  CAS  Google Scholar 

  44. Y.H. Shih, M.S. Li, Adsorption of selected volatile organic vapors on multiwall carbon nanotubes. J. Hazard. Mater. 154, 21–28 (2008)

    Article  CAS  Google Scholar 

  45. H.B. Zhang, G.D. Lin, S.H. Zhou, X. Dong, T. Chen, Raman spectra of MWNT and MWNT-based H2- adsorbing. Carbon 40, 2429–2436 (2002)

    Article  CAS  Google Scholar 

  46. L.G. Zhou, S.Q. Shi, Adsorption of foreign atoms on Stone–Wales defects in carbon nanotube. Carbon 41, 613–615 (2003)

    Article  CAS  Google Scholar 

  47. C. Amorim, M.A. Keane, Effect of surface acid groups associated with amorphous and structured carbon on the catalytic hydrodechlorination of chlorobenzenes. J. Chem. Technol. Biot. 83, 66–72 (2008)

    Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Shahram Solaymani for discussion about reviewers’ comments and revised manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Hantehzadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elyassi, M., Rashidi, A., Hantehzadeh, M.R. et al. Hydrogen Storage Behaviors by Adsorption on Multi-Walled Carbon Nanotubes. J Inorg Organomet Polym 27, 285–295 (2017). https://doi.org/10.1007/s10904-016-0471-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-016-0471-y

Keywords

Navigation