Skip to main content
Log in

Synthesis, Spectroscopic, Surface and Catalytic Reactivity of Chitosan Supported Co(II) and Its Zerovalentcobalt Nanobiocomposite

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Chitosan was used as a stabilizer to synthesize chitosan cobalt(II) [Chit–Co(II)] and its zerovalentcobalt nanobiocomposite via chemical reduction. The complex and Chit–ZVCo were used to polymerize vinylacetate in aqueous Na2SO3. The Chit–Co(II) and Chit–ZVCo were characterized by spectroscopic (FT-IR and UV–Visible), XRD and SEM techniques. Application of these biomaterials for the polymerization of VAc afforded polyvinylacetate with improved yield. Comparing the reactivity of Chit–Co(II) and Chit–ZVCo, it was evident that Chit–ZVCo performed as better heterogeneous catalyst based on the synergic effect of interaction of cobalt nanoparticles and chitosan at the nanometric scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. R.S. Varma, Greener approach to nanomaterials and their sustainable applications. Curr. Opin. Chem. Eng. 1, 123–128 (2012)

    Article  CAS  Google Scholar 

  2. F. Ansari, A. Sobhani, M. Salavati-Nisari, Green synthesis of magnetic chitosan nanocomposites by a new sol–gel auto-combustion method. J. Magn. Magn. Mater. 410, 27–33 (2016)

    Article  CAS  Google Scholar 

  3. M. Chtchigrovsky, A. Primo, P. Gonzalez, K. Molvinger, M. Robitzer, F. Quignard, F. Taran, Functionalized chitosan as a green, recyclable, biopolymer-supported catalyst for the [3 + 2] Huisgen cycloaddition. Angew. Chem. Int. ed. 4, 5916–5920 (2009)

    Article  Google Scholar 

  4. S. Dumituru, Polysaccharides: Structural Diversity and Functional Versatility. (Mercel Dekker, New York, 2005)

    Google Scholar 

  5. S. Alikhanzadeh-Arani, M. Salavati-Nisari, M. Almasi-Kashi, Growth of the dysprosium-barium-copper oxide superconductor nanoclusters in biopolymer gels. J. Inorg. Organomet. Polym. 22, 1081–1086 (2012)

    Article  CAS  Google Scholar 

  6. F. Di Lena, K. Matyjaszewski, Transition metal catalysts for controlled radical polymerization. Progr. Polym. Sci. 35, 959–1021, (2010)

    Article  CAS  Google Scholar 

  7. Z. Xiong, D. Zhao, G. Pan, Rapid and controlled transformation of nitrate in water and brine by stabilized iron nanoparticles. J. Nanopart. Res. 11(4), 807–819 (2009)

    Article  CAS  Google Scholar 

  8. F. He, D. Zhao, Manipulating the size and dispersibility of zero-valent iron nanoparticles by use of carboxymethyl cellulose stabilizers. Environ. Sci. Technol. 41(17), 6216–6221 (2007)

    Article  CAS  Google Scholar 

  9. N.V. Maksimchuk, M.N. Timofeeva, M.S. Melgunov, A.N. Shmakov, Chesalov YuA, D.N. Dybtsev, V.P. Fedin, O.A. Kholdeeva, Hetrrogenous selective oxidation catalysts based on coordination polymer MIL-101 and transition metal-substituted polyoxometalates. J. Catal. 257, 315–323 (2008)

    Article  CAS  Google Scholar 

  10. S. Adewuyi, T.F. Akinhanmi, E.O. Taiwo, A.A. Adeyemi, Chelation of zinc(II) metal ion from waste water with biopolymeric chitosan ligand produced from snail shell. J. Chem. Soc. Nigeria 33(2), 46–49 (2008)

    CAS  Google Scholar 

  11. S. Adewuyi, N.O. Sanyaolu, S.A. Amolegbe, A.O. Sobola, O.M. Folarin, Poly[β-(1→4)-2-amino-2-deoxy-D-glucopyranose] based zero valent nickel nanocomposite for efficient reduction of nitrate in water. J. Environ. Sci. 24(9), 1702–1708 (2012)

    Article  CAS  Google Scholar 

  12. S. Adewuyi, I.O. Bisiriyu, C.A. Akinremi, Zinc(II) metal ion complexes of chitosan: toward heterogeneous-active catalysts for the polymerization of vinyl acetate. Ife J. Sci. 17(3), 749–754 (2015)

    Google Scholar 

  13. M. Salavati-Nisari, F. Davar, M. Mazaheri, M. Shaterian, Preparartion of cobalt nanoparticles from [bis(salicylidene)cobalt(II)]-oletlamine complex by thermal decomposition. J. Magn. Magn. Mater. 320, 575–578 (2008)

    Article  Google Scholar 

  14. M. Salavati-Nisari, F. Davar, K. Saberyan, Template synthesis and characterization of diaza dioxa macrocyclic nanosized cobalt(II) complex dispersed within nanocavity of zeolite-Y. Polyhedron 29, 2149–2156 (2010)

    Article  Google Scholar 

  15. M. Salavati-Nisari, E. Esmaeili, H. Seyghalkar, M. Bazarganipour, Cobalt(II) Schiff base complex on multi-wall carbon nanotubes (MWNTs) by covalently grafted method: synthesis, characterization and liquid phase epoxidation of cyclohexene by air. Inorg. Chim. Acta 375, 11–19 (2011)

    Article  Google Scholar 

  16. M. Salavati-Nisari, M. Bazarganipour, Synthesis, characterization and alcohol oxidation properties of multi-wall carbon nanotubes functionalized with a cobalt(II) Schiff base complex. Transition Met. Chem. 34, 605–612 (2009)

    Article  Google Scholar 

  17. G. Huai-min, C. Xian-Su, Study of Cobalt(II)-chitosan coordination polymer and its catalytic activity and selectivity for vinyl monomer polymerization. Polym. Adv. Technol. 15, 89–92 (2004)

    Article  Google Scholar 

  18. D. Wei, Y. Ye, X. Jia, C. Yuan, W. Qian, Chitosan as an active support for assembly of metal nanoparticles and application of the resultant bioconjugates in catalysis. Carbohydr. Res. 345, 74–81 (2010)

    Article  CAS  Google Scholar 

  19. L. Mengshan, Y.C. Bo, D. Walter, Chitosan as a natural polymer for heterogeneous catalysts support: a short review on its applications. Appl. Sci. 5, 1272–1283 (2015)

    Article  Google Scholar 

  20. J. Zhou, Z. Dong, H. Yang, Z. Shi, X. Zhou, R. Li, Pd immobilized on magnetic chitosan as a heterogeneous catalyst for acetalization and hydrogenation reactions. Appl. Surf. Sci. 27, 360–366 (2013)

    Article  Google Scholar 

  21. Y. Qiu, Z. Ma, P. Hu, Environmentally benign magnetic chitosan/Fe3O4 composites as reductant and stabilizer for anchoring AuNPs and their catalytic reduction of 4-nitrophenol. J. Mater. Chem. A 2, 13471–13478 (2015)

    Article  Google Scholar 

  22. C.A. Akinremi, V.B. Oyelude, S. Adewuyi, S.A. Amolegbe, T. Arowolo, Reduction of bromate in water using zerovalent cobalt 2,6-pyridine dicarboxylic acid crosslinked chitosan nanocomposite. J. Macromol. Sci. A 50(4), 435–440 (2013).

    Article  Google Scholar 

  23. R.A.A. Muzzarelli, C. Jeuniaux, G.W. Gooday, Chitin in Nature and Technology (Plenum Press, New York, 1986)

    Book  Google Scholar 

  24. S. Kumar, N. Nigam, T. Gosh, P.K. Duta, R.S. Yadav, A.C. Pandey, Preparation, characterization, and optical properties of a chitosan-anthraldehyde crosslinkable film. J. Appl. Polym. Sci. 115, 3056–3062 (2010)

    Article  CAS  Google Scholar 

  25. P.P. Sasidharan, Magnetic and spectral studies on cobalt complexes of thiosemicarbazones. IJCPS 3, 36–43 (2014)

    Google Scholar 

  26. A.A. Samir, M.I. Yousry, Spectroscopic, thermal and magnetic properties of some transition metal complexes derived from 1–Phenyl–3–substituted–4–nitroso–5–pyrazolones. J. Nat. Sci. 2(9), 1035–1043 (2010)

    Google Scholar 

  27. K. Sankar, A.B. Nazeera, Studies on Cu(II), Co(II), Ni(II) and Mn(III) complexes of merrifield resin supported ligand and antimicrobial activities of this novel Schiff base chelates. Orient. J. Chem. 27(2), 655–660 (2011)

    CAS  Google Scholar 

  28. N.J. Tharayil, R. Raveendran, A.V. Vaidyan, P.G. Chithra, Optical, electrical and structural studies of nickel–cobalt oxide nanoparticles. Indian J. Eng. Mater. Sci. 15, 489–496 (2008)

    CAS  Google Scholar 

  29. R. Jayakumar, R.L. Reis, J.F. Mano, Synthesis and characterization of N-methylenephenyl phosphonic chitosan. J. Macromol. Sci. A 44, 271–275 (2007)

    Article  CAS  Google Scholar 

  30. R.A.A. Muzzarelli, F. Tanfani, M. Emanuelli, M.G. Muzzarelli, G. Celia, The production of chitosans of superior quality. J. Appl. Biochem. 3, 316–321 (1981)

    CAS  Google Scholar 

  31. R. Sharma, D.P. Bisen, U. Shukla, B.G. Sharma, X-ray diffraction: a powerful method of characterizing nanomaterials. Rec. Res. Sci. Technol. 4(8),77–79 (2012).

    CAS  Google Scholar 

  32. K.B. Renukadevi, R. Madivanane, Normal coordinate analysis of polyvinyl acetate. IRACST Eng. Sci. Technol. 4(2), 2250–3498 (2012)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Department of Chemistry, Federal University of Agriculture, Abeokuta, Nigeria. I.O. Bisiriyu acknowledges Prof. Lateef Sanni and SLIDEN AFRICA for the financial aids.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Adewuyi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adewuyi, S., Bisiriyu, I.O., Akinremi, C.A. et al. Synthesis, Spectroscopic, Surface and Catalytic Reactivity of Chitosan Supported Co(II) and Its Zerovalentcobalt Nanobiocomposite. J Inorg Organomet Polym 27, 114–121 (2017). https://doi.org/10.1007/s10904-016-0452-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-016-0452-1

Keywords

Navigation