Advertisement

Pentacene- and BODIPY-Containing trans-Bis(ethynyl)bis(phosphine)platinum(II) Organometallic Polymers: A DFT Point of View

  • Antoine Bonnot
  • Pierre D. Harvey
Article

Abstract

The effect of the polymer dimension and the nature of the end-group of oligomer models containing pentacence ([pen]) and BODIPY ([BOD]) alternating with the organometallic fragment trans-bis(trialkylphosphine)platinum(II) ([Pt]), i.e. ([Ar] n[Pt] m)x with [Ar] = C≡C–[pen]–C≡C, C≡C–[BOD]–C≡C, and 1 < x < 4, on their structures and optical properties were investigated by means of DFT and TDDFT (B3LYP) calculations. For sake of reduction of computation size for the oligomers, the trialkylphosphine was set to PMe3 instead of the commonly encountered PBu3 in the experimental articles. Two specific aspects were addressed. Firstly, a series of computations were performed in a systematic manner in order to find the best conditions for these calculations (namely the choice of basis sets and solvent fields), due to the large size of the oligomer models. Secondly, the effect of the oligomer size and nature of the terminal unit of ([Ar] n[Pt] m)x, namely C≡C–[pen]–C≡CH or C≡C–[BOD]–C≡CH and [Pt]–Cl, on the structure and electronic properties have also been examined. These calculations indicate that the nature of end-groups has a little impact on the properties mentioned above for the alternating ((C≡C–[BOD]–C≡C) n[Pt] m)x oligomers, but some minor effects are noted for the (C≡C–[pen]–C≡C)-containing species. Noteworthy, the evolution of the properties, notably the position of the lowest energy electronic transition, shows no significant evolution above 3 units. This computational result indicates the limitation of the electronic communication across the polymer chains. The lowest energy electronic states are all mainly ππ* located in the [Ar] fragment. Consequently, this work was limited to 4 units only.

Keywords

Organometallic polymer Mono-dispersed oligomer Platinum BODIPY Pentacene DFT computations 

Notes

Acknowledgments

This research was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC), le Fonds Québécois de la Recherche sur la Nature et les Technologies (FQRNT), the Centre d’Études des Matériaux Optiques et Photoniques de l’Université de Sherbrooke (CEMOPUS), and the Agence National de la Recherche (ANR) for a grant of a Research Chair of Excellence.

Supplementary material

10904_2016_405_MOESM1_ESM.docx (7.4 mb)
Supplementary material 1 (DOCX 7595 kb)

References

  1. 1.
    W.-Y. Wong, P.D. Harvey, Macromol. Rapid. Commun. 31, 671–713 (2010)CrossRefGoogle Scholar
  2. 2.
    C.-H. Siu, L.T.L. Lee, S.-C. Yiu, P.-Y. Ho, P. Zhou, C.-L. Ho, T. Chen, J. Liu, K. Han, W.-Y. Wong, Chem. Eur. J. 22, 3750–3757 (2016)CrossRefGoogle Scholar
  3. 3.
    A.A.I. Sina, S.M.I. Al-Rafia, MdF Ahmad, R.K. Paul, S.M.S. Islam, M. Younus, P.R. Raithby, C.-L. Ho, Y.H. Lo, L. Liu, H. Li, W.-Y. Wong, J. Inorg. Organomet. Polym. Mater. 25, 427–436 (2015)Google Scholar
  4. 4.
    C.-L. Ho, S.-Y. Poon, P.-K. Lo, M.-S. Wong, W.-Y. Wong, J. Inorg. Organomet. Polym. Mater. 23, 206–215 (2013)CrossRefGoogle Scholar
  5. 5.
    F.R.F. Dai, Y.-C. Chen, L.-F. Lai, W.-J. Wu, C.H. Cui, G.-P. Tan, X.-Z. Wang, J.-T. Lin, H. Tian, W.-Y. Wong, Chem. Asian. J. 7, 1426–1434 (2012)CrossRefGoogle Scholar
  6. 6.
    L. Li, C.-L. Ho, W.-Y. Wong, J. Organomet. Chem. 703, 43–50 (2012)CrossRefGoogle Scholar
  7. 7.
    F.-R. Dai, H.-M. Zhan, Q. Liu, Y.-Y. Fu, J.-H. Li, Q.-W. Wang, Z. Xie, L. Wang, F. Yan, W.-Y. Wong, Chem. Euro. J. 18, 1502–1511 (2012)CrossRefGoogle Scholar
  8. 8.
    H. Zhan, W.-Y. Wong, A. Ng, A.B. Djurisic, W.-K. Chan, J. Organomet. Chem. 696, 4112–4120 (2011)CrossRefGoogle Scholar
  9. 9.
    Q. Wang, Z. He, A. Wild, H. Wu, Y. Cao, U.S. Schubert, C.-H. Chui, W.-Y. Wong, Chem. Asian. J. 6, 1766–1777 (2011)CrossRefGoogle Scholar
  10. 10.
    L. Li, W.-C. Chow, W.-Y. Wong, C.-H. Chui, R.S.-M. Wong, J. Organomet. Chem. 696, 1189–1197 (2011)CrossRefGoogle Scholar
  11. 11.
    Q. Wang, W.-Y. Wong, Poly. Chem. 2, 432–440 (2011)CrossRefGoogle Scholar
  12. 12.
    C. Qin, W.-Y. Wong, L. Wang, Macromolecules 44, 483–489 (2011)CrossRefGoogle Scholar
  13. 13.
    X.-Z. Wang, C.-L. Ho, L. Yan, X. Chen, X. Chen, K.-Y. Cheung, W.-Y. Wong, J. Inorg. Organomet. Polym. Mater. 20, 478–487 (2010)CrossRefGoogle Scholar
  14. 14.
    X.-Z. Wang, Q. Wang, L. Yan, W.-Y. Wong, K.-Y. Cheung, A. Ng, A.B. Djurisic, W.-K. Chan, Macromol. Rapid. Commun. 31, 861–867 (2010)CrossRefGoogle Scholar
  15. 15.
    H.-M. Zhan, S. Lamare, A. Ng, T. Kenny, H. Guernon, W.-K. Chan, A.B. Djurisic, P.D. Harvey, W.-Y. Wong, Macromolecules 44, 5155–5167 (2011)CrossRefGoogle Scholar
  16. 16.
    T. Goudreault, Z. He, Y. Guo, C.-L. Ho, H. Zhan, H. Qiwei, Y.-F. Keith, K.-L. Wong, D. Fortin, B. Yao, Z. Xie, L. Wang, W.-M. Kwok, P.D. Harvey, W.-Y. Wong, Macromolecules 43, 7936–7949 (2010)CrossRefGoogle Scholar
  17. 17.
    C.-L. Ho, C.-H. Chui, W.-Y. Wong, S.M. Aly, D. Fortin, P.D. Harvey, B. Yao, Z. Xie, L. Wang, Macromol. Chem. Phys. 210, 1786–1798 (2009)CrossRefGoogle Scholar
  18. 18.
    S.M. Aly, C.-L. Ho, W.-Y. Wong, D. Fortin, P.D. Harvey, Macromolecules 42, 6902–6916 (2009)CrossRefGoogle Scholar
  19. 19.
    S.M. Aly, C.-L. Ho, D. Fortin, W.-Y. Wong, A.S. Abd-El-Aziz, P.D. Harvey, Chem. Euro. J. 14, 8341–8352 (2008)CrossRefGoogle Scholar
  20. 20.
    X. Wang, T. Kenny, D. Fortin, S.M. Aly, G. Brisard, P.D. Harvey, Organometallics 34, 1567–1581 (2015)CrossRefGoogle Scholar
  21. 21.
    A.M. Soliman, E. Zysman-Colman, P.D. Harvey, Macromol. Rapid. Commun. 36, 627–632 (2015)CrossRefGoogle Scholar
  22. 22.
    X. Wang, D. Fortin, G. Brisard, P.D. Harvey, Macromol. Rapid. Commun. 35, 992–997 (2014)CrossRefGoogle Scholar
  23. 23.
    X. Wang, D. Fortin, G. Brisard, P.D. Harvey, Chem. Commun. 50, 350–352 (2014)CrossRefGoogle Scholar
  24. 24.
    S. Clement, T. Goudreault, D. Bellows, D. Fortin, L. Guyard, M. Knorr, P.D. Harvey, Chem. Commun. 48, 8640–8642 (2012)CrossRefGoogle Scholar
  25. 25.
    A.M. Soliman, D. Fortin, E. Zysman-Colman, P.D. Harvey, Chem. Commun. 48, 6271–6273 (2012)CrossRefGoogle Scholar
  26. 26.
    A.M. Soliman, D. Fortin, E. Zysman-Colman, P.D. Harvey, Macromol. Rapid. Commun. 33, 522–527 (2012)CrossRefGoogle Scholar
  27. 27.
    D. Fortin, S. Clement, K. Gagnon, J.-F. Berube, M.P. Stewart, W.E. Geiger, P.D. Harvey, Inorg. Chem. 48, 446–454 (2009)CrossRefGoogle Scholar
  28. 28.
    K. Gagnon, S.M. Aly, A. Brisach-Wittmeyer, D. Bellows, J.-F. Berube, L. Caron, A.S. Abd-El-Aziz, D. Fortin, P.D. Harvey, Organometallics 27, 2201–2214 (2008)CrossRefGoogle Scholar
  29. 29.
    A. Lapprand, N. Khiri, D. Fortin, S. Juge, P.D. Harvey, Inorg. Chem. 52, 2361–2371 (2013)CrossRefGoogle Scholar
  30. 30.
    S.M. Aly, T. Kenny, S. Lamare, P.D. Harvey, J. Inorg. Organomet. Polym. Mater. 25, 118–125 (2015)CrossRefGoogle Scholar
  31. 31.
    T. Kenny, S.M. Aly, G. Brisard, D. Fortin, P.D. Harvey, Macromol. Rapid. Commun. 34, 511–515 (2013)CrossRefGoogle Scholar
  32. 32.
    B. Du, D. Fortin, P.D. Harvey, J. Inorg. Organomet. Polym. Mater. 23, 81–88 (2013)CrossRefGoogle Scholar
  33. 33.
    T. Kenny, S. Lamare, S.M. Aly, D. Fortin, G. Brisard, P.D. Harvey, Inorg. Chem. 51, 13081–13095 (2012)CrossRefGoogle Scholar
  34. 34.
    F.-L. Jiang, D. Fortin, P.D. Harvey, Inorg. Chem. 49, 2614–2623 (2010)CrossRefGoogle Scholar
  35. 35.
    S. Goswami, G. Wicks, A. Rebane, K.S. Schanze, Dalton Trans. 43, 17721–17728 (2014)CrossRefGoogle Scholar
  36. 36.
    K. Ogawa, F. Guo, K.S. Schanze, J. Photochem. Photobiol. A. 207, 79–85 (2009)CrossRefGoogle Scholar
  37. 37.
    J. Mei, K. Ogawa, Y.-G. Kim, N.C. Heston, D.J. Arenas, Z. Nasrollahi, T.D. McCarley, D.B. Tanner, J.R. Reynolds, K.S. Schanze, ACS. Appl. Mater. Interfaces 1, 150–161 (2009)CrossRefGoogle Scholar
  38. 38.
    F. Guo, Y.-G. Kim, J.R. Reynolds, K.S. Schanze, Chem. Commun. 17, 1887–1889 (2006)CrossRefGoogle Scholar
  39. 39.
    K. Haskins-Glusac, M.R. Pinto, C. Tan, K.S. Schanze, J. Am. Chem. Soc. 126, 14964–14971 (2004)CrossRefGoogle Scholar
  40. 40.
    I. Fratoddi, C. Battocchio, A.L. Groia, M.V. Russo, J. Polym. Sci. Pol. Chem. 45, 3311–3329 (2007)CrossRefGoogle Scholar
  41. 41.
    L. Sudha Devi, M.K. Al-Suti, N. Zhang, S.J. Teat, L. Male, H.A. Sparkes, P.R. Raithby, M.S. Khan, A. Kohler, Macromolecules 42, 1131–1141 (2009)CrossRefGoogle Scholar
  42. 42.
    M. Jura, O.F. Koentjoro, P.R. Raithby, E.L. Sharp, P.J. Wilson, Mater. Res. Soc. Symp. Proc. 846, 59–64 (2005)Google Scholar
  43. 43.
    M.S. Khan, M.K. Al-Suti, H.H. Shah, S. Al-Humaimi, F.R. Al-Battashi, J.K. Bjernemose, L. Male, P.R. Raithby, N. Zhang, A. Koehler, J.E. Warren, Dalton Trans. 40, 10174–10183 (2011)CrossRefGoogle Scholar
  44. 44.
    L. Sudha Devi, M.K. Al-Suti, C. Dosche, M.S. Khan, R.H. Friend, A. Kohler, Phys. Rev. B Condens. Matter. 78, 045210–045218 (2008)CrossRefGoogle Scholar
  45. 45.
    W.-Y. Wong, X.-Z. Wang, Z. He, K.-K. Chan, A.B. Djurisic, K.-Y. Cheung, C.-T. Yip, A.M.-C. Ng, Y.Y. Xi, C.S.K. Mak, W.-K. Chan, J. Am. Soc. 129, 14372–14380 (2007)CrossRefGoogle Scholar
  46. 46.
    X.-Z. Wang, W.-Y. Wong, K.-Y. Cheung, M.-K. Fung, A.B. Djurisic, W.-K. Chan, Dalton Trans. 40, 5484–5494 (2008)CrossRefGoogle Scholar
  47. 47.
    L. Liu, C.-L. Ho, W.-Y. Wong, K.-Y. Cheung, M.-K. Fung, W.-T. Lam, A.B. Djurisic, W.-K. Chan, Adv. Funct. Mater. 18, 2824–2833 (2008)CrossRefGoogle Scholar
  48. 48.
    W.-Y. Wong, X.-Z. Wang, H.-L. Zhang, K.-Y. Cheung, M.-K. Fung, A.B. Djurisic, W.-K. Chan, J. Organomet. Chem. 693, 3603–3612 (2008)CrossRefGoogle Scholar
  49. 49.
    W.-Y. Wong, X.-Z. Wang, Z. He, A.B. Djurisic, C.-T. Yip, K.-Y. Cheung, H. Wang, C.S.K. Mak, W.-K. Chan, Nature Mater. 6, 521–527 (2007)CrossRefGoogle Scholar
  50. 50.
    W.-Y. Wong, G.-J. Zhou, Z. He, K.-Y. Cheung, A.M.-C. Ng, A.B. Djurisic, W.-K. Chan, Macromol. Chem. Phys. 209, 1319–1332 (2008)CrossRefGoogle Scholar
  51. 51.
    A. Koehler, A.L.T. Khan, J.S. Wilson, C. Dosche, M.K. Al-Suti, H.H. Shah, M.S. Khan, J. Chem. Phys. 136, 094905–094913 (2012)CrossRefGoogle Scholar
  52. 52.
    M.-H. Nguyen, V.H. Nguyen, J.H.K. Yip, Organometallics 32, 7283–7291 (2013)CrossRefGoogle Scholar
  53. 53.
    M.-H. Nguyen, J.H.K. Yip, Organometallics 31, 7522–7531 (2012)CrossRefGoogle Scholar
  54. 54.
    M.-H. Nguyen, J.H.K. Yip, Organometallics 30, 6383–6392 (2011)CrossRefGoogle Scholar
  55. 55.
    W. Yang, A. Karatay, J. Zhao, J. Song, L. Zhao, Y. Xing, C. Zhang, C. He, H.G. Yaglioglu, M. Hayvali, A. Elmali, B. Kucukoz, Inorg. Chem. 54, 7492–7505 (2015)CrossRefGoogle Scholar
  56. 56.
    H. Jia, B. Kucukoz, Y. Xing, P. Majumdar, C. Zhang, A. Karatay, H.G. Yaglioglu, A. Elmali, J. Zhao, M. Hayvali, J. Mater. Chem. C 2, 9720–9736 (2014)CrossRefGoogle Scholar
  57. 57.
    S. Zhang, Y. Sheng, G. Wei, Y. Quan, Y. Cheng, C. Zhu, J. Polym. Sci. Pol. Chem. 52, 1686–1692 (2014)CrossRefGoogle Scholar
  58. 58.
    W. Wu, J. Zhao, H. Guo, J. Sun, S. Ji, Z. Wang, Chem. Euro. J. 18, 1961–1968 (2012)CrossRefGoogle Scholar
  59. 59.
    W. Wu, J. Zhao, J. Sun, L. Huang, X. Yi, J. Mater. Chem. C 1, 705–716 (2013)CrossRefGoogle Scholar
  60. 60.
    M.J. Frisch et al., Gaussian, Inc., Wallingford CT (2004)Google Scholar
  61. 61.
    P. Hohenberg, W. Kohn, J. Phys. Rev. 136, 864–871 (1964)CrossRefGoogle Scholar
  62. 62.
    P. Hohenberg, W. Kohn, J. Phys. Rev. 140, 1133–1138 (1965)CrossRefGoogle Scholar
  63. 63.
    R.G. Parr, W. Yang, Density-functional theory of atoms and molecules (Oxford University Press, Oxford, 1989)Google Scholar
  64. 64.
    D.R. Salahub, M.C. Zerner, The challenge of d and f electrons (American Chemical Society, Washington, DC, 1989)CrossRefGoogle Scholar
  65. 65.
    R. Bauernschmitt, R. Ahlrichs, Chem. Phys. Lett. 256, 454–464 (1996)CrossRefGoogle Scholar
  66. 66.
    M.E. Casida, C. Jamorski, K.C. Casida, D.R. Salahub, J. Chem. Phys. 108, 4439–4449 (1998)CrossRefGoogle Scholar
  67. 67.
    R.E. Stratmann, G.E. Scuseria, M.J. Frisch, J. Chem. Phys. 109, 8218–8224 (1998)CrossRefGoogle Scholar
  68. 68.
    C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785–789 (1988)CrossRefGoogle Scholar
  69. 69.
    B. Miehlich, A. Savin, H. Stoll, H. Preuss, Chem. Phys. Lett. 157, 200–206 (1989)CrossRefGoogle Scholar
  70. 70.
    A.D. Becke, J. Chem. Phys. 98, 5648–5652 (1993)CrossRefGoogle Scholar
  71. 71.
    N.M. O’Boyle, A.L. Tenderholt, K.M. Langner, J. Comput. Chem. 29, 839–845 (2008)CrossRefGoogle Scholar
  72. 72.
    J.S. Binkley, J.A. Pople, W.J. Hehre, J. Am. Chem. Soc. 102, 939–947 (1980)CrossRefGoogle Scholar
  73. 73.
    M.S. Gordon, J.S. Binkley, J.A. Pople, W.J. Pietro, W.J. Hehre, J. Am. Chem. Soc. 104, 2797–2803 (1982)CrossRefGoogle Scholar
  74. 74.
    W.J. Pietro, M.M. Francl, W.J. Hehre, D.J. Defrees, J.A. Pople, J.S. Binkley, J. Am. Chem. Soc. 104, 5039–5048 (1982)CrossRefGoogle Scholar
  75. 75.
    K.D. Dobbs, W.J. Hehre, J. Comput. Chem. 7, 359–378 (1986)CrossRefGoogle Scholar
  76. 76.
    K.D. Dobbs, W.J. Hehre, J. Comput. Chem. 8, 861–879 (1987)CrossRefGoogle Scholar
  77. 77.
    K.D. Dobbs, W.J. Hehre, J. Comput. Chem. 8, 880–893 (1987)CrossRefGoogle Scholar
  78. 78.
    J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev. 105, 2999–3093 (2005)CrossRefGoogle Scholar
  79. 79.
    D. Osella, R. Gobetto, C. Nervi, M. Ravera, R. D’Amato, M.V. Russo, Inorg. Chem. Commun. 1, 239–245 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Département de chimieUniversité de SherbrookeSherbrookeCanada

Personalised recommendations