Skip to main content
Log in

Carbon Nanotubes (CNTs) Nanocomposite Hydrogels Developed for Various Applications: A Critical Review

  • Review Paper
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Interest in the development of polymeric hydrogels impregnated with carbon-nanotubes (CNTs) is growing rapidly in recent times owing to their usefulness in many fields of human endeavor. This review paper serves as an archive of literature reports of several researchers who have worked on polymeric hydrogels embedded with CNTs for diverse applications. The review covers up to date research advancement on the synthesis and characterization properties of CNTs nanocomposite hydrogels. Besides, this review discusses extensively the various fields in which polymeric hydrogels infused with CNTs have been applied. This unprecedented compilation of CNTs nanocomposite hydrogels information into a single revision allows a straightforward comparison of studies performed for diverse applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. N. Annabi, A. Tamayol, J.A. Uquillas, M. Akbari, L.E. Bertassoni, C. Cha et al., 25th anniversary article: rational design and applications of hydrogels in regenerative medicine. Adv. Mater. 26, 85–124 (2014)

    Article  CAS  Google Scholar 

  2. D. Janas, S. Boncel, K.K.K. Koziol, Electrothermal halogenation of carbon nanotube films. Carbon N. Y. 73, 259–266 (2014)

    Article  CAS  Google Scholar 

  3. K.K.R. Datta, A. Achari, M. Eswaramoorthy, Aminoclay: a functional layered material with multifaceted applications. J. Mater. Chem. A 1, 6707 (2013)

    Article  CAS  Google Scholar 

  4. L. Wei, N. Hu, Y. Zhang, Synthesis of polymer—mesoporous silica nanocomposites. Materials (Basel) 3, 4066–4079 (2010)

    Article  CAS  Google Scholar 

  5. J. Hur, K. Im, S.W. Kim, U.J. Kim, J. Lee, S. Hwang et al., DNA hydrogel templated carbon nanotube and polyaniline assembly and its applications for electrochemical energy storage devices. J. Mater. Chem. A 1, 14460 (2013)

    Article  CAS  Google Scholar 

  6. N. Jackson, A. Sheehan, M. Hasan, F. Stam, K.M. Razeeb, Electromechanical properties of carbon nanotube infused polyacrylamide hydrogel. Adv. Polym. Technol. 34 (2015)

  7. R.A. MacDonald, C.M. Voge, M. Kariolis, J.P. Stegemann, Carbon nanotubes increase the electrical conductivity of fibroblast-seeded collagen hydrogels. Acta Biomater. 4, 1583–1592 (2008)

    Article  CAS  Google Scholar 

  8. S. Pok, F. Vitale, S.L. Eichmann, O.M. Benavides, M. Pasquali, J.G. Jacot, Biocompatible carbon nanotube—chitosan scaffold matching the electrical conductivity of the heart. ACS nano 8, 9822–9832 (2014)

    Article  CAS  Google Scholar 

  9. C.A. Li, K.N. Han, M.P.N. Bui, X.H. Pham, G.H. Seong, Development of hydrogel microstructures on single-walled carbon nanotube films. Appl. Surf. Sci. 256, 7428–7433 (2010)

    Article  CAS  Google Scholar 

  10. A. Servant, C. Bussy, K. Al-Jamal, K. Kostarelos, Design, engineering and structural integrity of electro-responsive carbon nanotube- based hydrogels for pulsatile drug release. J. Mater. Chem. B 1, 4593 (2013)

    Article  CAS  Google Scholar 

  11. K. Gao, Z. Shao, X. Wang, Y. Zhang, W. Wang, F. Wang, Cellulose nanofibers/multi-walled carbon nanotube nanohybrid aerogel for all-solid-state flexible supercapacitors. RSC Adv. 3, 15058 (2013)

    Article  CAS  Google Scholar 

  12. Z. Liu, A. Lu, Z. Yang, Y. Luo, Enhanced swelling and mechanical properties of P(AM-co-SMA) semi-IPN composite hydrogels by impregnation with PANI and MWNTs-COOH. Macromol. Res. 21, 376–384 (2013)

    Article  CAS  Google Scholar 

  13. K. Sui, S. Gao, W. Wu, Y. Xia, Injectable supramolecular hybrid hydrogels formed by MWNT-grafted-poly(ethylene glycol) and α-cyclodextrin. J. Polym. Sci. Part A 48, 3145–3151 (2010)

    Article  CAS  Google Scholar 

  14. S.R. Shin, C. Shin, A. Memic, S. Shadmehr, M. Miscuglio, H.Y. Jung et al., Aligned carbon nanotube-based flexible gel substrates for engineering biohybrid tissue actuators. Adv. Funct. Mater. 25, 4486–4495 (2015)

    Article  CAS  Google Scholar 

  15. G. Cirillo, S. Hampel, U.G. Spizzirri, O.I. Parisi, N. Picci, F. Iemma, Carbon nanotubes hybrid hydrogels in drug delivery: a perspective review. Biomed. Res. Int. 2014, 1–17 (2014)

    Article  CAS  Google Scholar 

  16. S.H. Hong, T.T. Tung, T.Y. Kim, K.S. Suh, Preparation of single-walled carbon nanotube (SWNT) gel composites using poly(ionic liquids). Colloid Polym. Sci. 288, 1013–1018 (2010)

    Article  CAS  Google Scholar 

  17. X.-F. Sun, Q. Ye, Z. Jing, Y. Li, Preparation of hemicellulose-g-poly(methacrylic acid)/carbon nanotube composite hydrogel and adsorption properties. Polym. Compos. 35, 45–52 (2014)

    Article  CAS  Google Scholar 

  18. E. Lee, J. Park, S.G. Im, C. Song, Synthesis of single-walled carbon nanotube-incorporated polymer hydrogels via click chemistry. Polym. Chem. 3, 2451 (2012)

    Article  CAS  Google Scholar 

  19. B. Derkus, K.C. Emregul, E. Emregul, Evaluation of protein immobilization capacity on various carbon nanotube embedded hydrogel biomaterials. Mater. Sci. Eng. C 56, 132–140 (2015)

    Article  CAS  Google Scholar 

  20. A. Di Crescenzo, L. Bardini, B. Sinjari, T. Traini, L. Marinelli, M. Carraro et al., Surfactant hydrogels for the dispersion of carbon-nanotube-based catalysts. Chem. A Eur. J. 19, 16415–16423 (2013)

    Article  CAS  Google Scholar 

  21. I. Garcia, I. Azcune, P. Casuso, P.M. Carrasco, H.-J. Grande, G. Cabañero, et al., Carbon nanotubes/chitin nanowhiskers aerogel achieved by quaternization-induced gelation. J. Appl. Polym. Sci. 132 (2015)

  22. J.G. Duque, C.E. Hamilton, G. Gupta, S.A. Crooker, J.J. Crochet, A. Mohite et al., Fluorescent single-walled carbon nanotube aerogels in surfactant-free environments. ACS Nano 5, 6686–6694 (2011)

    Article  CAS  Google Scholar 

  23. L. He, D. Lin, Y. Wang, Y. Xiao, J. Che, Electroactive SWNT/PEGDA hybrid hydrogel coating for bio-electrode interface. Colloids Surf. B Biointerfaces 87, 273–279 (2011)

    Article  CAS  Google Scholar 

  24. H. Hosseinzadeh, Synthesis of carrageenan/multi-walled carbon nanotube hybrid hydrogel nanocomposite for adsorption of crystal violet from aqueous solution. Pol. J. Chem. Technol. 17, 70–76 (2015)

    Article  CAS  Google Scholar 

  25. Y. Huang, Y. Zheng, W. Song, Y. Ma, J. Wu, L. Fan, Poly(vinyl pyrrolidone) wrapped multi-walled carbon nanotube/poly(vinyl alcohol) composite hydrogels. Compos. Part A. 42, 1398–1405 (2011)

    Article  CAS  Google Scholar 

  26. G. Jie, Z. Kongyin, Z. Xinxin, C. Zhijiang, C. Min, C. Tian et al., Preparation and characterization of carboxyl multi-walled carbon nanotubes/calcium alginate composite hydrogel nano-filtration membrane. Mater. Lett. 157, 112–115 (2015)

    Article  CAS  Google Scholar 

  27. N. Kameta, K. Yoshida, M. Masuda, T. Shimizu, Supramolecular nanotube hydrogels: remarkable resistance effect of confined proteins to denaturants. Chem. Mater. 21, 5892–5898 (2009)

    Article  CAS  Google Scholar 

  28. N.I. Kovtyukhova, T.E. Mallouk, L. Pan, E.C. Dickey, Individual single-walled nanotubes and hydrogels made by oxidative exfoliation of carbon nanotube ropes. J. Am. Chem. Soc. 125, 9761–9769 (2003)

    Article  CAS  Google Scholar 

  29. B. Lee, S. Lee, M. Lee, D.H. Jeong, Y. Baek, J. Yoon et al., Carbon nanotube-bonded graphene hybrid aerogels and their application to water purification. Nanoscale 7, 6782–6789 (2015)

    Article  CAS  Google Scholar 

  30. C. Li, R. Mezzenga, Functionalization of multiwalled carbon nanotubes and their pH-responsive hydrogels with amyloid fibrils. Langmuir 28, 10142–10146 (2012)

    Article  CAS  Google Scholar 

  31. H. Li, D.Q. Wang, B.L. Liu, L.Z. Gao, Synthesis of a novel gelatin–carbon nanotubes hybrid hydrogel. Colloids Surf. B Biointerfaces 33, 85–88 (2004)

    Article  CAS  Google Scholar 

  32. H. Liu, M. Liu, L. Zhang, L. Ma, J. Chen, Y. Wang, Dual-stimuli sensitive composites based on multi-walled carbon nanotubes and poly(N,N-diethylacrylamide-co-acrylic acid) hydrogels. React. Funct. Polym. 70, 294–300 (2010)

    Article  CAS  Google Scholar 

  33. Y.-L. Luo, F. Xu, Q.-S. Feng, Y.-S. Chen, C. Ma, Preparation and characterization of PMAA/MWCNTs nanohybrid hydrogels with improved mechanical properties. J. Biomed. Mater. Res. Part B Appl. Biomater. 92B, 243–254 (2010)

    Article  CAS  Google Scholar 

  34. S.K. Mandal, T. Kar, P.K. Das, Pristine carbon-nanotube-included supramolecular hydrogels with tunable viscoelastic properties. Chem A. Eur. J. 19, 12486–12496 (2013)

    Article  CAS  Google Scholar 

  35. S. Mu, Y. Liang, S. Chen, L. Zhang, T. Liu, MWNT-hybrided supramolecular hydrogel for hydrophobic camptothecin delivery. Mater. Sci. Eng. C 50, 294–299 (2015)

    Article  CAS  Google Scholar 

  36. S. Nardecchia, D. Carriazo, M.L. Ferrer, M.C. Gutiérrez, F. del Monte, Three dimensional macroporous architectures and aerogels built of carbon nanotubes and/or graphene: synthesis and applications. Chem. Soc. Rev. 42, 794–830 (2013)

    Article  CAS  Google Scholar 

  37. S. Roy, A. Banerjee, Functionalized single walled carbon nanotube containing amino acid based hydrogel: a hybrid nanomaterial. RSC Adv. 2, 2105 (2012)

    Article  CAS  Google Scholar 

  38. S.K. Samal, F. Chiellini, C. Bartoli, E.G. Fernandes, Hybrid hydrogels based on poly (vinylalcohol)—chitosan blends and relevant CNT composites (Springer, Hydrogels Biol. Prop. Appl., 2009), pp. 67–78

    Google Scholar 

  39. N.S. Satarkar, D. Johnson, B. Marrs, R. Andrews, C. Poh, B. Gharaibeh et al., Hydrogel-MWCNT nanocomposites: synthesis, characterization, and heating with radiofrequency fields. J. Appl. Polym. Sci. 117, 1813–1819 (2010)

    CAS  Google Scholar 

  40. M. Sheikholeslam, M. Pritzker, P. Chen, Hybrid peptide–carbon nanotube dispersions and hydrogels. Carbon N. Y. 71, 284–293 (2014)

    Article  CAS  Google Scholar 

  41. X. Shi, Y. Zheng, C. Wang, L. Yue, K. Qiao, G. Wang et al., Dual stimulus responsive drug release under the interaction of pH value and pulsatile electric field for a bacterial cellulose/sodium alginate/multi-walled carbon nanotube hybrid hydrogel. RSC Adv. 5, 41820–41829 (2015)

    Article  CAS  Google Scholar 

  42. S.R. Shin, H. Bae, J.M. Cha, J.Y. Mun, Y.-C. Chen, H. Tekin et al., Carbon nanotube reinforced hybrid microgels as scaffold materials for cell encapsulation. ACS Nano 6, 362–372 (2012)

    Article  CAS  Google Scholar 

  43. H. Song, Q. Zhu, X. Zheng, X. Chen, One-step synthesis of three-dimensional graphene/multiwalled carbon nanotubes/Pd composite hydrogels: an efficient recyclable catalyst for Suzuki coupling reactions. J. Mater. Chem. A 3, 10368–10377 (2015)

    Article  CAS  Google Scholar 

  44. Y.S. Song, A passive microfluidic valve fabricated from a hydrogel filled with carbon nanotubes. Carbon N. Y. 50, 1417–1421 (2012)

    Article  CAS  Google Scholar 

  45. F. Tardani, C. La Mesa, Effects of single-walled carbon nanotubes on lysozyme gelation. Colloids Surf. B Biointerfaces 121, 165–170 (2014)

    Article  CAS  Google Scholar 

  46. N. Tzokova, C.M. Fernyhough, P.D. Topham, N. Sandon, D.J. Adams, M.F. Butler et al., Soft hydrogels from nanotubes of poly(ethylene oxide)—tetraphenylalanine conjugates prepared by click chemistry. Langmuir 25, 2479–2485 (2009)

    Article  CAS  Google Scholar 

  47. S. Vural, K.B. Dikovics, D.M. Kalyon, Cross-link density, viscoelasticity and swelling of hydrogels as affected by dispersion of multi-walled carbon nanotubes. Soft Matter. 6, 3870 (2010)

    Article  CAS  Google Scholar 

  48. B. Wang, K. Song, Y. Han, T. Zhang, Synthesis and characterization of multi-walled carbon nanotube doped silica aerogels. J. Wuhan. Univ. Technol. Sci. Ed. 27, 512–515 (2012)

    Article  CAS  Google Scholar 

  49. Z. Wang, Y. Chen, Supramolecular hydrogels hybridized with single-walled carbon nanotubes. Macromolecules 40, 3402–3407 (2007)

    Article  CAS  Google Scholar 

  50. L.Y. Yan, H. Chen, P. Li, D.-H. Kim, M.B. Chan-Park, Finely dispersed single-walled carbon nanotubes for polysaccharide hydrogels. ACS Appl. Mater. Interfaces 4, 4610–4615 (2012)

    Article  CAS  Google Scholar 

  51. C. Zamora-Ledezma, L. Buisson, S.E. Moulton, G. Wallace, C. Zakri, C. Blanc et al., Carbon nanotubes induced gelation of unmodified hyaluronic acid. Langmuir 29, 10247–10253 (2013)

    Article  CAS  Google Scholar 

  52. C.-H. Zhang, Y.-L. Luo, Y.-S. Chen, Q.-B. Wei, L.-H. Fan, Preparation and theophylline delivery applications of novel PMAA/MWCNT-COOH nanohybrid hydrogels. J. Biomater. Sci. Polym. Ed. 20, 1119–1135 (2009)

    Article  CAS  Google Scholar 

  53. M. Zhang, B. Gao, X. Cao, L. Yang, Synthesis of a multifunctional graphene–carbon nanotube aerogel and its strong adsorption of lead from aqueous solution. RSC Adv. 3, 21099 (2013)

    Article  CAS  Google Scholar 

  54. S. Zhao, C. Li, Y. Zhou, S. Wang, F. Su, J. Cui et al., A multifunctional hydrogel based on heterostructured hybrids of single-walled carbon nanotubes and clay nanoplatelets. Carbon N. Y. 77, 846–856 (2014)

    Article  CAS  Google Scholar 

  55. P.C. Ma, N.A. Siddiqui, G. Marom, J.K. Kim, Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos. Part A 41, 1345–1367 (2010)

    Article  CAS  Google Scholar 

  56. Y.Y. Huang, E.M. Terentjev, Dispersion of carbon nanotubes: mixing, sonication, stabilization, and composite properties. Polymers (Basel) 4, 275–295 (2012)

    Article  CAS  Google Scholar 

  57. Z. Liu, Z. Yang, Y. Luo, Swelling, pH sensitivity, and mechanical properties of poly(acrylamide-co-sodium methacrylate) nanocomposite hydrogels impregnated with carboxyl-functionalized carbon nanotubes. Polym. Compos. 33, 665–674 (2012)

    Article  CAS  Google Scholar 

  58. X. Tong, J. Zheng, Y. Lu, Z. Zhang, H. Cheng, Swelling and mechanical behaviors of carbon nanotube/poly(vinyl alcohol) hybrid hydrogels. Mater. Lett. 61, 1704–1706 (2007)

    Article  CAS  Google Scholar 

  59. G.A. Evingur, O. Pekcan, Effect of multiwalled carbon nanotube (MWNT) on the behavior of swelling of polyacrylamide-MWNT composites. J. Reinf. Plast. Compos. 33, 1199–1206 (2014)

    Article  CAS  Google Scholar 

  60. G.A. Evingür, Ö. Pekcan, Elastic percolation of swollen polyacrylamide (PAAm)–multiwall carbon nanotubes composite. Phase Transit. 85, 553–564 (2012)

    Article  CAS  Google Scholar 

  61. G.A. Evingür, Ö. Pekcan, Monitoring of dynamical processes in PAAm–MWNTs composites by fluorescence method. Adv. Compos. Mater. 21, 193–208 (2012)

    Article  CAS  Google Scholar 

  62. G.A. Evingür, Ö. Pekcan, Drying of polyacrylamide-multiwalled carbon nanotube (MWNT) composites with various MWNTs contents: a fluorescence study. J. Polym. Eng. 33, 33–39 (2013)

    Article  CAS  Google Scholar 

  63. S. Haider, S.-Y. Park, K. Saeed, B.L. Farmer, Swelling and electroresponsive characteristics of gelatin immobilized onto multi-walled carbon nanotubes. Sens. Actuators B Chem. 124, 517–528 (2007)

    Article  CAS  Google Scholar 

  64. Sudha, B.M. Mishra, D. Kumar, Effect of multiwalled carbon nanotubes on the conductivity and swelling properties of porous polyacrylamide hydrogels. Part Sci. Technol. 32, 624–631 (2014)

    Article  CAS  Google Scholar 

  65. G.M. Spinks, G.G. Wallace, T.W. Lewis, L. Fifield, L.M. Dai, R.H. Baughman, Electrochemically driven actuators from conducting polymers, hydrogels and carbon nanotubes. Smart Mater. 4234, 223–231 (2001)

    Article  CAS  Google Scholar 

  66. J. Shi, Z.X. Guo, B. Zhan, H. Luo, Y. Li, D. Zhu, Actuator based on MWNT/PVA hydrogels. J. Phys. Chem. B 109, 14789–14791 (2005)

    Article  CAS  Google Scholar 

  67. S.H. Lee, C.K. Lee, S.R. Shin, B.K. Gu, S.I. Kim, T.M. Kang et al., Enhanced actuation of PPy/CNT hybrid fibers using porous structured DNA hydrogel. Sens. Actuators B Chem. 145, 89–92 (2010)

    Article  CAS  Google Scholar 

  68. H.F. Cui, J.S. Ye, Zhang W. De, F.S. Sheu, Modification of carbon nanotubes with redox hydrogel: improvement of amperometric sensing sensitivity for redox enzymes. Biosens. Bioelectron. 24, 1723–1729 (2009)

    Article  CAS  Google Scholar 

  69. X. Zhang, C.L. Pint, M.H. Lee, B.E. Schubert, A. Jamshidi, K. Takei et al., Optically- and thermally-responsive programmable materials based on carbon nanotube-hydrogel polymer composites. Nano Lett. 11, 3239–3244 (2011)

    Article  CAS  Google Scholar 

  70. M. De Volder, S.H. Tawfick, D. Copic, A.J. Hart, Hydrogel-driven carbon nanotube microtransducers. Soft Matter. 7, 9844 (2011)

    Article  CAS  Google Scholar 

  71. T. Tungkavet, N. Seetapan, D. Pattavarakorn, A. Sirivat, Electromechanical properties of multi-walled carbon nanotube/gelatin hydrogel composites: effects of aspect ratios, electric fi eld, and temperature. Mater. Sci. Eng. C 46, 281–289 (2015)

    Article  CAS  Google Scholar 

  72. T.A. Khan, M. Nazir, E.A. Khan, Riaz U (2015) Multiwalled carbon nanotube—polyurethane (MWCNT/PU) composite adsorbent for safranin T and Pb(II) removal from aqueous solution: batch and fi xed-bed studies. J. Mol. Liq. 212, 467–479 (2015)

    Article  CAS  Google Scholar 

  73. S. Chatterjee, T. Chatterjee, S.R. Lim, S.H. Woo, Effect of the addition mode of carbon nanotubes for the production of chitosan hydrogel core-shell beads on adsorption of Congo red from aqueous solution. Bioresour. Technol. 102, 4402–4409 (2011)

    Article  CAS  Google Scholar 

  74. S. Chatterjee, M.W. Lee, S.H. Wooa, Adsorption of congo red by chitosan hydrogel beads impregnated with carbon nanotubes. Bioresour. Technol. 101, 1800–1806 (2010)

    Article  CAS  Google Scholar 

  75. Z. Gu, Y. Wang, J. Tang, J. Yang, J. Liao, Y. Yang et al., The removal of uranium(VI) from aqueous solution by graphene oxide–carbon nanotubes hybrid aerogels. J. Radioanal. Nucl. Chem. 303, 1835–1842 (2014)

    Google Scholar 

  76. G. Slaughter, T. Kulkarni, Fabrication of palladium nanowire array electrode for biofuel cell application. Microelectron. Eng. 149, 92–96 (2016)

    Article  CAS  Google Scholar 

  77. S. Deuk, J. Ho, Y. Ho, S. Yeol, P.K. Dwivedi, A. Sharma et al., Enzyme immobilization on microelectrode arrays of CNT/Nafion nanocomposites fabricated using hydrogel microstencils. Microelectron. Eng. 141, 193–197 (2015)

    Article  CAS  Google Scholar 

  78. G. Gnana, S. Hashmi, C. Karthikeyan, A. Ghavaminejad, M. Vatankhah-varnoosfaderani, F.J. Stadler, Graphene oxide/carbon nanotube composite hydrogels—versatile materials for microbial fuel cell applications. Macromol. Rapid Commun. 35, 1861–1865 (2014)

    Google Scholar 

  79. P. Lv, Q. Feng, Q. Wang, G. Li, D. Li, Q. Wei, Biosynthesis of bacterial cellulose/carboxylic multi-walled carbon nanotubes for enzymatic biofuel cell application. Materials (Basel) 9, 183 (2016)

    Article  Google Scholar 

  80. B. Chandra, B. Gogoi, M. Boruah, M. Khannam, G. Ameen, S. Kumar, High performance polyvinyl alcohol/multi walled carbon nanotube/polyaniline hydrogel (PVA/MWCNT/PAni) based dye sensitized solar cells. Electrochim. Acta 146, 106–111 (2014)

    Article  CAS  Google Scholar 

  81. Y.S. Chen, P.C. Tsou, J.M. Lo, H.C. Tsai, Y.Z. Wang, G.H. Hsiue, Poly(N-isopropylacrylamide) hydrogels with interpenetrating multiwalled carbon nanotubes for cell sheet engineering. Biomaterials 34, 7328–7334 (2013)

    Article  CAS  Google Scholar 

  82. Z. Cheng, R. Chai, P. Ma, Y. Dai, X. Kang, H. Lian et al., Multiwalled carbon nanotubes and NaYF4:Yb3+/Er 3+ nanoparticle-doped bilayer hydrogel for concurrent NIR-triggered drug release and up-conversion luminescence tagging. Langmuir 29, 9573–9580 (2013)

    Article  CAS  Google Scholar 

  83. A.C. Estrada, A.L. Daniel-Da-Silva, T. Trindade, Photothermally enhanced drug release by κ-carrageenan hydrogels reinforced with multi-walled carbon nanotubes. RSC Adv. 3, 10828–10836 (2013)

    Article  CAS  Google Scholar 

  84. J. Venkatesan, R. Jayakumar, A. Mohandas, I. Bhatnagar, S.K. Kim, Antimicrobial activity of chitosan-carbon nanotube hydrogels. Materials (Basel) 7, 3946–3955 (2014)

    Article  CAS  Google Scholar 

  85. S.R. Shin, S.M. Jung, M. Zalabany, K. Kim, P. Zorlutuna, S.B. Kim et al., Carbon-nanotube-embedded hydrogel sheets for engineering cardiac constructs and bioactuators. ACS Nano 7, 2369–2380 (2013)

    Article  CAS  Google Scholar 

  86. A. Giri, M. Bhowmick, S. Pal, A. Bandyopadhyay, Polymer hydrogel from carboxymethyl guar gum and carbon nanotube for sustained trans-dermal release of diclofenac sodium. Int. J. Biol. Macromol. 49, 885–893 (2011)

    Article  CAS  Google Scholar 

  87. H. Li, J. He, Y. Zhao, G. Wang, Q. Wei, The effect of carbon nanotubes added into Bullfrog collagen hydrogel on gentamicin sulphate release: in vitro. J. Inorg. Organomet. Polym. Mater. 21, 890–892 (2011)

    Article  CAS  Google Scholar 

  88. R.M. Sankar, K.M.S. Meera, D. Samanta, A. Murali, P. Jithendra, A.B. Mandal et al., The reinforced hydrogel for drug loading: immobilization of single-walled carbon nanotubes in cross-linked polymers via multiple interactions. RSC Adv. 2(32), 12424–12430 (2012)

    Article  CAS  Google Scholar 

  89. M. Gunavadhi, L.A.A. Maria, V.N. Chamundeswari, M. Parthasarathy, Nanotube-grafted polyacrylamide hydrogels for electrophoretic protein separation. Electrophoresis 33, 1271–1275 (2012)

    Article  CAS  Google Scholar 

  90. F. Xie, P. Weiss, O. Chauvet, J. Le Bideau, J.F. Tassin, Kinetic studies of a composite carbon nanotube-hydrogel for tissue engineering by rheological methods. J. Mater. Sci. Mater. Med. 21, 1163–1168 (2010)

    Article  CAS  Google Scholar 

  91. R. Bellingeri, F. Alustiza, N. Picco, D. Acevedo, M.A. Molina, R. Rivero et al., In vitro toxicity evaluation of hydrogel-carbon nanotubes composites on intestinal cells. J. Appl. Polym. Sci. 132, 1–7 (2015)

    Article  CAS  Google Scholar 

  92. S. Beg, M. Rizwan, A.M. Sheikh, M.S. Hasnain, K. Anwer, K. Kohli, Advancement in carbon nanotubes: basics, biomedical applications and toxicity. J. Pharm. Pharmacol. 63, 141–163 (2011)

    Article  CAS  Google Scholar 

  93. X.W. Liu, Y.X. Huang, X.F. Sun, G.P. Sheng, F. Zhao, S.G. Wang et al., Conductive carbon nanotube hydrogel as a bioanode for enhanced microbial electrocatalysis. ACS Appl. Mater. Interfaces 6, 8158–8164 (2014)

    Article  CAS  Google Scholar 

  94. B. Le Ouay, S. Lau-Truong, E. Flahaut, R. Brayner, J. Aubard, T. Coradin et al., DWCNT-doped silica gel exhibiting both ionic and electronic conductivities. J. Phys. Chem. C 116, 11306–11314 (2012)

    Article  CAS  Google Scholar 

  95. C.J. Ferris, Conducting bio-materials based on gellan gum hydrogels. Soft Matter. 5, 3430 (2009)

    Article  CAS  Google Scholar 

  96. J. Wu, Y. Ren, J. Sun, L. Feng, Carbon nanotubes-coated macroporous poly(N-isopropylacrylamide) hydrogel and its electro-sensitivity. ACS Appl. Mater. Interfaces 5(9), 3519–3523 (2013)

    Article  CAS  Google Scholar 

  97. J.-M. Noël, L. Mottet, N. Bremond, P. Poulin, C. Combellas, J. Bibette et al., Multiscale electrochemistry of hydrogels embedding conductive nanotubes. Chem. Sci. 6, 3900–3905 (2015)

    Article  CAS  Google Scholar 

  98. D.K. Aktaş, G.A. Evingür, Ö. Pekcan, Critical exponents of gelation and conductivity in polyacrylamide gels doped by multiwalled carbon nanotubes. Compos. Interfaces 17, 301–318 (2010)

    Article  CAS  Google Scholar 

  99. M. Bourourou, M. Holzinger, A. Maaref, S. Cosnier, Chemically reduced electrospun polyacrilonitrile—carbon nanotube nanofibers hydrogels as electrode material for bioelectrochemical applications. Carbon 7, 3–8 (2015)

    Google Scholar 

  100. M. Haghgoo, A.A. Yousefi, M.J.Z. Mehr, A.F. Léonard, M.P. Philippe, P. Compère et al., Correlation between morphology and electrical conductivity of dried and carbonized multi-walled carbon nanotube/resorcinol–formaldehyde xerogel composites. J. Mater. Sci. 50, 6007–6020 (2015)

    Article  CAS  Google Scholar 

  101. H. Qi, E. Mäder, J. Liu, Electrically conductive aerogels composed of cellulose and carbon nanotubes. J. Mater. Chem. A 1, 9714 (2013)

    Article  CAS  Google Scholar 

  102. B.C. Thompson, S.E. Moulton, K.J. Gilmore, M.J. Higgins, P.G. Whitten, G.G. Wallace, Carbon nanotube biogels. Carbon N. Y. 47, 1282–1291 (2009)

    Article  CAS  Google Scholar 

  103. Y. Xiao, L. He, J. Che, An effective approach for the fabrication of reinforced composite hydrogel engineered with SWNTs, polypyrrole and PEGDA hydrogel. J. Mater. Chem. 22, 8076 (2012)

    Article  CAS  Google Scholar 

  104. D.K. Aktaş, H. Uzun, A fluorescence study for the critical behavior of polymethylmethacrylate doped by multiwalled carbon nanotube (PMMA–MWNT) composite bulk gel systems. Appl. Phys. A 111, 959–964 (2013)

    Article  CAS  Google Scholar 

  105. S. Chatterjee, M.W. Lee, S.H. Woo, Enhanced mechanical strength of chitosan hydrogel beads by impregnation with carbon nanotubes. Carbon N. Y. 47, 2933–2936 (2009)

    Article  CAS  Google Scholar 

  106. M. Vaysse, M.K. Khan, P. Sundararajan, Carbon nanotube reinforced porous gels of poly(methyl methacrylate) with nonsolvents as porogens. Langmuir 25, 7042–7049 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The School of Chemical Engineering, Universiti Sains Malaysia is appreciated for providing necessary support. Also, special thanks go to the Center for Integrative Petroleum Research, King Fahd University of Petroleum and Minerals, Saudi Arabia for providing necessary assistance in the on-going research work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ahmad A. Adewunmi or Suzylawati Ismail.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adewunmi, A.A., Ismail, S. & Sultan, A.S. Carbon Nanotubes (CNTs) Nanocomposite Hydrogels Developed for Various Applications: A Critical Review. J Inorg Organomet Polym 26, 717–737 (2016). https://doi.org/10.1007/s10904-016-0379-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-016-0379-6

Keywords

Navigation