Synthesis, Structural and Optical Characterization of MgO Nanocrystalline Embedded in PVA Matrix

  • Shahbaa F. Bdewi
  • Omed Gh. Abdullah
  • Bakhtyar K. Aziz
  • Ayad A. R. Mutar
Article

Abstract

Nano-magnesium oxide (MgO) was prepared by wet chemical method using magnesium chloride and sodium hydroxide as precursors and soluble gelatin as stabilizing agent in this paper. The synthesized nano MgO was characterized by XRD, SEM, and FTIR. The results showed that the size of nano-MgO was about 20.62 nm. Polyvinyl alcohol (PVA) polymer based nanocomposites, with different concentrations of MgO (1, 2, 3, 4 wt%), have been prepared using solvent casting technique. The results of SEM revealed that the MgO nanoparticles are uniformly distributed in PVA polymer matrix. FTIR analysis evidently saw the interaction between MgO with hydroxyl group of PVA through hydrogen bonding. The influences of MgO nanoparticle on the optical characterisation of PVA have been considered using UV–Vis–NIR spectroscopy. Energy band gap and tail of localized state of PVA/MgO nanocomposites have been calculated by using Tauc and Urbach relations, respectively. The band gap of the nanocomposites samples decreases as MgO wt% increases. Wemple-DiDomenico single-oscillator model has been applied to analyze the dispersion of the refractive index of the films, and the dispersion parameters are calculated to obtain the information about disorder degree.

Keywords

Sol–gel MgO nanoparticles Optical band gap Urbach energy Dispersion energy 

References

  1. 1.
    P. Tamilselvi, A. Yelilarasi, M. Hema, R. Anbarasan, Nano Bull. 2, 130106–1301065 (2013)Google Scholar
  2. 2.
    K. Ariga, Y. Yamauchi, M. Aono, APL Mater. 3, 061001 (2015)CrossRefGoogle Scholar
  3. 3.
    M. Aono, K. Ariga, Adv. Mater. (2015). doi:10.1002/adma.201502868 Google Scholar
  4. 4.
    S. Suresh, J. Ovonic Res. 10, 205–210 (2014)Google Scholar
  5. 5.
    L. DeMatteis, L. Custardoy, R.F. Pacheco, C. Magen, J.M. Fuente, C. Marquina, M.R. Ibarra, Chem. Mater. 24, 451–456 (2012)CrossRefGoogle Scholar
  6. 6.
    K. Ariga, Q. Ji, W. Nakanishi, J.P. Hill, M. Aono, Mater. Horiz. 2, 406–413 (2015)CrossRefGoogle Scholar
  7. 7.
    S.D. Meenakshi, M. Rajarajan, S. Rajendran, Z.R. Kennedy, G. Brindha, Elixir Nanotechnol. 50, 10618–10620 (2012)Google Scholar
  8. 8.
    K. Ariga, J. Inorg. Organomet. Polym Mater. 25, 177–178 (2015)CrossRefGoogle Scholar
  9. 9.
    J. Bai, F. Meng, Ch. Wei, Y. Zhao, H. Tan, J. Liu, Ceram. Silik. 55, 20–25 (2011)Google Scholar
  10. 10.
    K.R. Nemade, S.A. Waghuley, Int. J. Metals, 2014, Article ID 389416 (2014)Google Scholar
  11. 11.
    M. Sundrarajan, J. Suresh, R.R. Gandhi, Dig. J. Nanomater. Biostruct. 7, 983–989 (2012)Google Scholar
  12. 12.
    S. Gandhi, P. Abiramipriya, N. Pooja, J.J.L. Jeyakumari, A.Y. Arasi, V. Dhanalakshmi, M.R.G. Nair, R. Anbarasan, J. Non-Cryst. Solids 357, 181–185 (2011)CrossRefGoogle Scholar
  13. 13.
    G. Venugopal, R. George, N. Raghavan, T. Srinivas, A. Dakshinamurthy, A.J. Paul, A.B. Marahatta, Adv. Sci. Eng. Med. 7, 1–8 (2015)CrossRefGoogle Scholar
  14. 14.
    Y. Li, G. He, S. Wang, S. Yu, F. Pan, H. Wu, Z. Jiang, J. Mater. Chem. A 1, 10058–10077 (2013)CrossRefGoogle Scholar
  15. 15.
    H. Agrawal, K. Awasthi, V.K. Saraswat, Polym. Bull. 71, 1539–1555 (2014)CrossRefGoogle Scholar
  16. 16.
    G. Momen, M. Farzaneh, Rev. Adv. Mater. Sci. 27, 1–13 (2011)Google Scholar
  17. 17.
    I.Y. Jeon, J.B. Baek, Materials 3, 3654–3674 (2010)CrossRefGoogle Scholar
  18. 18.
    D. Fragiadakis, P. Pissis, L. Bokobza, Polymer 46, 6001–6008 (2005)CrossRefGoogle Scholar
  19. 19.
    S. Bose, P.A. Mahanwar, J. Miner. Mater. Charact. Eng. 3, 65–89 (2004)Google Scholar
  20. 20.
    R. Dangtungee, J. Yun, P. Supaphol, Polym. Test. 24, 2–11 (2005)CrossRefGoogle Scholar
  21. 21.
    P. Supaphol, P. Thanomkiat, J. Junkasem, R. Dangtungee, Polym. Test. 26, 20–37 (2007)CrossRefGoogle Scholar
  22. 22.
    S. Agarwal, V.K. Saraswat, Opt. Mater. 42, 335–339 (2015)CrossRefGoogle Scholar
  23. 23.
    K. Karthikeyan, N. Poornaprakash, N. Selvakumar, K. Jeyasubrmanian, J. Nanostruct. Polymers Nanocompos. 5(4), 83–88 (2009)Google Scholar
  24. 24.
    M. Alam, N.M. Alandis, A.A. Ansari, M.R. Shaik, J. Nanomater. 2013, 1–5 (2013)Google Scholar
  25. 25.
    C.P. Avanzato, J.M. Follieri, I.A. Banerjee, K.R. Fath, J. Compos. Mater. 43, 897–910 (2009)CrossRefGoogle Scholar
  26. 26.
    Z.X. Tang, B.F. Lv, Braz. J. Chem. Eng. 31, 591–601 (2014)CrossRefGoogle Scholar
  27. 27.
    J. Sawai, H. Kojima, H. Igarashi, A. Hashimoto, S. Shoji, T. Sawaki, A. Hakoda, E. Kawada, T. Kokugan, M. Shimizu, World J. Microbiol. Biotechnol. 16, 187–194 (2000)CrossRefGoogle Scholar
  28. 28.
    J.H. Kim, J.Y. Kim, Y.M. Lee, K.Y. Kim, J. Appl. Polym. Sci. 45, 1711–1717 (1992)CrossRefGoogle Scholar
  29. 29.
    M.H. Makled, E. Sheha, T.S. Shanap, M.K. El-Mansy, J. Adv. Res. 4, 531–538 (2013)CrossRefGoogle Scholar
  30. 30.
    O. Abdullah, D.A. Tahir, K. Kadir, J. Mater. Sci. 26, 6939–6944 (2015)Google Scholar
  31. 31.
    O. Abdullah, S.A. Hussen, Adv. Mater. Res. 383–390, 3257–3263 (2012)Google Scholar
  32. 32.
    R. Das, S. Pandey, Int. J. Mater. Sci. 1, 35–40 (2011)Google Scholar
  33. 33.
    O. Abdullah, S.B. Aziz, K.M. Omer, Y.M. Salih, J. Mater. Sci. 26, 5303–5309 (2015)Google Scholar
  34. 34.
    J. Tauc, A. Menth, D.L. Wood, Phys. Rev. Lett. 25, 749–752 (1970)CrossRefGoogle Scholar
  35. 35.
    M. Mohammadikish, F. Davar, M.R. Loghman-Estarki, J. Mater. Sci. 26, 2937–2946 (2015)Google Scholar
  36. 36.
    V. Krishnakumar, G. Shanmugam, Ionics 18, 403–411 (2012)CrossRefGoogle Scholar
  37. 37.
    M.R. Loghman-Estarki, M.H. Oghaz, H. Edris, R.S. Razavi, Cryst. Eng. Comm. 15, 5898–5909 (2013)CrossRefGoogle Scholar
  38. 38.
    O. Abdullah, B.K. Aziz, D.M. Salh, Indian J. Appl. Res. 3, 477–480 (2013)CrossRefGoogle Scholar
  39. 39.
    P.K. Khanna, R. Gokhale, V.V.V.S. Subbarao, A.K. Vishwanath, B.K. Das, C.V.V. Satyanarayana, Mater. Chem. Phys. 92, 229–233 (2005)CrossRefGoogle Scholar
  40. 40.
    N. Singh, P.K. Khanna, Mater. Chem. Phys. 104, 367–372 (2007)CrossRefGoogle Scholar
  41. 41.
    F.I. Ezema, P.U. Asogwa, A.B.C. Ekwealor, P.E. Ugwuoke, R.U. Osuji, J. Univ. Chem. Technol. Metall. 42, 217–222 (2007)Google Scholar
  42. 42.
    F.F. Muhammad, S.B. Aziz, S.A. Hussein, J. Mater. Sci. 26, 521–529 (2015)Google Scholar
  43. 43.
    F. Yakuphanoglu, M. Kandaz, M.N. Yarasir, F.B. Senkal, Physica B 393, 235–238 (2007)CrossRefGoogle Scholar
  44. 44.
    F. Yakuphanoglu, S. Ilican, M. Caglar, Y. Caglar, J. Optoelectron. Adv. Mater. 9, 2180–2185 (2007)Google Scholar
  45. 45.
    M.B. Mohammadi, I. Mobasherpour, E.M. Rad, G. Mortazavi, J. Ceram. Process. Res. 15, 88–92 (2014)Google Scholar
  46. 46.
    O. Abdullah, Y.A.K. Salman, S.A. Saleem, Phys. Mater. Chem. 3, 18–24 (2015)Google Scholar
  47. 47.
    R.P. Chahal, S. Mahendia, A.K. Tomar, S. Kumar, J. Alloys Compd. 538, 212–219 (2012)CrossRefGoogle Scholar
  48. 48.
    A.S. Roy, S. Gupta, S. Sindhu, A. Parveen, P.C. Ramamurthy, Compos. B 47, 314–319 (2013)CrossRefGoogle Scholar
  49. 49.
    S. Gunasekaran, E. Sailatha, S. Seshadri, S. Kumaresan, Indian J. Pure Appl. Phys. 47, 12–18 (2009)Google Scholar
  50. 50.
    Z. Ali, H. Youssef, T. Afify, Polym. Comp. 29, 1119–1124 (2008)CrossRefGoogle Scholar
  51. 51.
    S. Keskin, I. Uslu, T. Tunc, M. Ozturk, A. Aytimur, Mater. Manuf. Processes 26, 1346–1351 (2011)CrossRefGoogle Scholar
  52. 52.
    B. Ahmed, S.K. Raghuvanshi, S. Siddhartha, A.K. Srivastava, J.B.M. Krishna, M.A. Wahab, Indian J. Pure Appl. Phys. 50, 892–898 (2012)Google Scholar
  53. 53.
    G.Y. Rudko, A.O. Kovalchuk, V.I. Fediv, W.M. Chen, I.A. Buyanova, J. Colloid Interface Sci. 452, 33–37 (2015)CrossRefGoogle Scholar
  54. 54.
    G. Attia, M.F.H. Abd El-kader, Int. J. Electrochem. Sci. 8, 5672–5687 (2013)Google Scholar
  55. 55.
    M.M. Varishetty, W. Qiu, Y. Gao, W. Chen, Polym. Eng. Sci. 50, 878–884 (2010)CrossRefGoogle Scholar
  56. 56.
    T. Datta, J.A. Woollam, W. Notohamiprodjo, Phy. Rev. B 40, 5956–5960 (1989)CrossRefGoogle Scholar
  57. 57.
    F. Urbach, Phys. Rev. 92, 1324 (1952)CrossRefGoogle Scholar
  58. 58.
    A.M. Shehap, Egypt. J. Solids 31, 75–91 (2008)Google Scholar
  59. 59.
    F.H. Abd El-kader, N.A. Hakeem, I.S. Elashmawi, A.M. Ismail, Aust. J. Basic Appl. Sci. 7, 608–619 (2013)Google Scholar
  60. 60.
    I. Saini, J. Rozra, N. Chandak, S. Aggarwal, P.K. Sharma, A. Sharma, Mater. Chem. Phys. 139, 802–810 (2013)CrossRefGoogle Scholar
  61. 61.
    S.H. Wemple, M. DiDomenico, Phys. Rev. B 3, 1338–1351 (1971)CrossRefGoogle Scholar
  62. 62.
    M.A. Mahdi, S.K.J. Al-Ani, Int. J. Nanoelectron. Mater. 5, 11–24 (2012)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Shahbaa F. Bdewi
    • 1
  • Omed Gh. Abdullah
    • 2
  • Bakhtyar K. Aziz
    • 3
  • Ayad A. R. Mutar
    • 1
  1. 1.Department of Chemistry, College of ScienceUniversity of AnbarRamadiIraq
  2. 2.Department of Physics, Faculty of Science and Science Education, School of ScienceUniversity of SulaimaniKurdistan RegionIraq
  3. 3.Department of Chemistry, Faculty of Science and Science Education, School of ScienceUniversity of SulaimaniKurdistan RegionIraq

Personalised recommendations