Methyl orange removal from wastewater using [Zn2(oba)2(4-bpdh)]·3DMF metal–organic frameworks nanostructures

  • Amir Reza AbbasiEmail author
  • Mohammadreza Yousefshahi
  • Azadeh Azadbakht
  • Ali MorsaliEmail author
  • Mohammad Yaser Masoomi


A porous coordination polymer, [Zn2(oba)2(4-bpdh)]·3DMF (TMU-5) upon silk yarn, has been synthesized under ultrasound irradiation. We here present a textile for the adsorptive removal methyl orange from wastewater using three-dimensional porous Zn(II)-based metal–organic framework (TMU-5) and silk fibers. The effect of sequential dipping steps in growth of TMU-5 upon fiber has been studied. These systems depicted a decrease in the size accompanying a decrease in the sequential dipping steps. The samples were characterized with powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy spectra and scanning electron microscopy. XRD analyses indicated that the prepared TMU-5 on silk fibers were crystalline.


Ultrasound irradiation Metal–organic framework Wastewater Methyl orange 



Support of this investigation by Iran National Science Foundation: INSF and Razi University of Kermanshah are gratefully acknowledged.


  1. 1.
    F.A. Almeida Paz, J. Klinowski, S.M.F. Vilela, J.P.C. Tome, J.A.S. Cavaleiro, J. Rocha, Ligand design for functional metal-organic frameworks. Chem. Soc. Rev. 41, 1088–1110 (2012)CrossRefGoogle Scholar
  2. 2.
    H.C. Zhou, J.R. Long, O.M. Yaghi, Introduction to metal-organic frameworks. Chem. Rev. 112, 673–674 (2012)CrossRefGoogle Scholar
  3. 3.
    S. Kitagawa, S. Noro, T. Nakamura, Pore surface engineering of microporous coordination polymers. Chem. Commun. 7, 701–707 (2006)CrossRefGoogle Scholar
  4. 4.
    D. Maspoch, D. Ruiz-Molina, J. Veciana, Old materials with new tricks: multifunctional open-framework materials. Chem. Soc. Rev. 36, 770–818 (2007)CrossRefGoogle Scholar
  5. 5.
    J.J.T. Perry, J.A. Perman, M.J. Zaworotko, Design and synthesis of metal-organic frameworks using metal-organic polyhedra as supermolecular building blocks. Chem. Soc. Rev. 38, 1400–1417 (2009)CrossRefGoogle Scholar
  6. 6.
    R.B. Getman, Y.S. Bae, C.E. Wilmer, R.Q. Snurr, Review and analysis of molecular simulations of methane, hydrogen, and acetylene storage in metal-organic frameworks. Chem. Rev. 112, 703–723 (2012)CrossRefGoogle Scholar
  7. 7.
    H.B. Tanh Jeazet, C. Staudt, C. Janiak, Metal-organic frameworks in mixed-matrix membranes for gas separation. Dalton Trans. 41, 14003–14027 (2012)CrossRefGoogle Scholar
  8. 8.
    J. Sculley, D. Yuan, H.-C. Zhou, The current status of hydrogen storage in metal–organic frameworks—updated. Energy Environ. Sci. 4, 2721–2735 (2011)CrossRefGoogle Scholar
  9. 9.
    M. Yoon, R. Srirambalaji, K. Kim, Homochiral metal-organic frameworks for asymmetric heterogeneous catalysis. Chem. Rev. 112, 1196–1231 (2012)CrossRefGoogle Scholar
  10. 10.
    Z. Yin, Q.X. Wang, M.H. Zeng, Iodine release and recovery, influence of polyiodide anions on electrical conductivity and nonlinear optical activity in an interdigitated and interpenetrated bipillared-bilayer metal-organic framework. J. Am. Chem. Soc. 134, 4857–4863 (2012)CrossRefGoogle Scholar
  11. 11.
    L. Hashemi, A. Morsali, Microwave assisted synthesis of a new lead(ii) porous three-dimensional coordination polymer: study of nanostructured size effect on high iodide adsorption affinity. CrystEngComm 14, 779–781 (2012)CrossRefGoogle Scholar
  12. 12.
    S. Qiu, G. Zhu, Molecular engineering for synthesizing novel structures of metal–organic frameworks with multifunctional properties. Coord. Chem. Rev. 253, 2891–2911 (2009)CrossRefGoogle Scholar
  13. 13.
    D. Zacher, O. Shekhah, C. Woll, R.A. Fischer, Thin films of metal-organic frameworks. Chem. Soc. Rev. 38, 1418–1429 (2009)CrossRefGoogle Scholar
  14. 14.
    M. Meilikhov, K. Yusenko, E. Schollmeyer, C. Mayer, H.-J. Buschmann, R.A. Fischer, Stepwise deposition of metal organic frameworks on flexible synthetic polymer surfaces. Dalton Trans. 40, 4838–4841 (2011)CrossRefGoogle Scholar
  15. 15.
    D. Zacher, K. Yusenko, A. Betard, S. Henke, M. Molon, T. Ladnorg, O. Shekhah, B. Schupbach, T. Arcos, M. Krasnopolski, M. Meilikhov, J. Winter, A. Terfort, C. Woll, R.A. Fischer, Liquid-phase epitaxy of multicomponent layer-based Porous coordination polymer thin films of [M(L)(P)0.5] type: importance of deposition sequence on the oriented growth. Chem. Eur. J. 17, 1448–1455 (2011)CrossRefGoogle Scholar
  16. 16.
    J.K. Yuan, X.G. Liu, O. Akbulut, J.Q. Hu, S.L. Suib, J. Kong, F. Stellacci, Superwetting nanowire membranes for selective absorption. Nanotechnology 3, 332–336 (2008)Google Scholar
  17. 17.
    A.R. Abbasi, K. Akhbari, A. Morsali, Dense coating of surface mounted CuBTC metal–organic framework nanostructures on silk fibers, prepared by layer-by-layer method under ultrasound irradiation with antibacterial activity. Ultrason. Sonochem. 19, 846–852 (2012)CrossRefGoogle Scholar
  18. 18.
    V. Safarifard, A. Morsali, Application of ultrasound to the synthesis of nanoscale metal-organic coordination polymers. Coord. Chem. Rev. 292, 1–14 (2015)CrossRefGoogle Scholar
  19. 19.
    S. Hermes, F. Schröder, R. Chelmowski, C. Wöll, R.A. Fischer, Selective nucleation and growth of metal-organic open framework thin films on patterned COOH/CF3-terminated self-assembled monolayers on Au(111). J. Am. Chem. Soc. 127, 13744–13745 (2005)CrossRefGoogle Scholar
  20. 20.
    E. Biemmi, C. Scherb, T. Bein, Oriented growth of the metal organic framework Cu3(BTC)2(H2O)3·xH2O tunable with functionalized self-assembled monolayers. J. Am. Chem. Soc. 129, 8054–8055 (2007)CrossRefGoogle Scholar
  21. 21.
    A. Schoedel, C. Scherb, T. Bein, Oriented nanoscale films of metal–organic frameworks by room-temperature gel-layer synthesis. Angew. Chem. Int. Ed. 49, 7225–7228 (2010)CrossRefGoogle Scholar
  22. 22.
    D. Zacher, A. Baunemann, S. Hermes, R.A. Fischer, Deposition of microcrystalline [Cu3(btc)2] and [Zn2(bdc)2(dabco)] at alumina and silica surfaces modified with patterned self assembled organic monolayers: evidence of surface selective and oriented growth. J. Mater. Chem. 17, 2785–2792 (2007)CrossRefGoogle Scholar
  23. 23.
    J. Gascon, S. Aguado, F. Kapteijn, Manufacture of dense coatings of Cu3(BTC)2 (HKUST-1) on α-alumina. Microporous Mesoporous Mater. 113, 132–138 (2008)CrossRefGoogle Scholar
  24. 24.
    A.M.B. Furtado, J. Liu, Y. Wang, M.D. LeVan, Mesoporous silica–metal organic composite: synthesis, characterization, and ammonia adsorption. J. Mater. Chem. 21, 6698–6706 (2011)CrossRefGoogle Scholar
  25. 25.
    Mercury 1.4.1, Copyright Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, CB21EZ, UK, 2001-2005Google Scholar
  26. 26.
    M.Y. Masoomi, K.C. Stylianou, A. Morsali, P. Retailleau, D. Maspoch, Selective CO2 capture in metal-organic frameworks with azine-functionalized pores generated by mechanosynthesis. Cryst. Growth Des. 14, 2092–2096 (2014)CrossRefGoogle Scholar
  27. 27.
    A.R. Abbasi, A. Morsali, Formation of silver iodide nanoparticles on silk fiber by means of ultrasonic irradiation. Ultrason. Sonochem. 17, 704–710 (2010)CrossRefGoogle Scholar
  28. 28.
    M. Meilikhov, K. Yusenko, E. Schollmeyer, C. Mayer, H.-J. Buschmann, R.A. Fischer, Stepwise deposition of metal organic frameworks on flexible synthetic polymer surfaces. Dalton Trans. 40, 4838–4841 (2011)CrossRefGoogle Scholar
  29. 29.
    M.Y. Masoomi, S. Beheshti, A. Morsali, Shape control of Zn(II) metal–organic frameworks by modulation synthesis and their morphology-dependent catalytic performance. Cryst. Growth Des. 15, 2533–2538 (2015)CrossRefGoogle Scholar
  30. 30.
    R. Moosavi, A.R. Abbasi, M. Yousefi, A. Ramazani, A. Morsali, Ultrasound-assisted coating of polyester fiber with silver bromide nanoparticles. Ultrason. Sonochem. 19, 1221–1226 (2012)CrossRefGoogle Scholar
  31. 31.
    M.D. Luque de Castro, F. Priego-Capote, Ultrasound-assisted crystallization (sonocrystallization). Ultrason. Sonochem. 14, 717–724 (2007)CrossRefGoogle Scholar
  32. 32.
    A.R. Abbasi, A. Morsali, Synthesis and properties of silk yarn containing Ag nanoparticles under ultrasound irradiation. Ultrason. Sonochem. 18, 282–287 (2011)CrossRefGoogle Scholar
  33. 33.
    P. Horcajada, C. Serre, G. Maurin, N.A. Ramsahye, F. Balas, M. Vallet-Regi, M. Sebban, F. Taulelle, G. Ferey, Flexible porous metal-organic frameworks for a controlled drug delivery. J. Am. Chem. Soc. 130, 6774–6780 (2008)CrossRefGoogle Scholar
  34. 34.
    N.A. Khan, Z. Hasan, S.H. Jhung, Adsorptive removal of hazardous materials using metal-organic frameworks (MOFs): a review. J. Hazard. Mater. 244, 444–456 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Amir Reza Abbasi
    • 1
    Email author
  • Mohammadreza Yousefshahi
    • 1
  • Azadeh Azadbakht
    • 2
  • Ali Morsali
    • 3
    Email author
  • Mohammad Yaser Masoomi
    • 3
  1. 1.Faculty of ChemistryRazi UniversityKermanshahIslamic Republic of Iran
  2. 2.Department of Chemistry, Faculty of Science, Khorramabad BranchIslamic Azad UniversityKhorramabadIran
  3. 3.Department of Chemistry, Faculty of SciencesTarbiat Modares UniversityTehranIran

Personalised recommendations