Skip to main content
Log in

RETRACTED ARTICLE: NaI Scintillator Application for Detection of X-ray Due to Hotfoot Electrons in Tokamak

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

This article was retracted on 05 April 2023

This article has been updated

Abstract

Scintillator is a material that exhibits scintillation when excited by ionizing radiation. Luminescent materials, when struck by an incoming particle, absorb its energy and scintillate. Sometimes, the excited state is metastable, so the relaxation back down from the excited state to lower states is delayed (necessitating anywhere from a few nanoseconds to hours depending on the material). The process then corresponds to either one of two phenomena, depending on the type of transition and hence the wavelength of the emitted optical photon: delayed fluorescence or phosphorescence. On the other hand, study of hard X-ray emission from the energetic electrons is an important issue in tokamaks. Suggestion of methods to reduce these electrons and therefore emitted hard X-ray is important for tokamak plasma operation. In this work, we investigated the effects of external applied fields on hard X-ray intensity and Mirnov activity using the NaI scintillator and fast Fourier transform analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

References

  1. M. Endler, Nucl. Fusion 35, 1307 (1995)

    Article  CAS  Google Scholar 

  2. G.D. Wang et al., Chin. Phys. Lett. 15, 510 (1998)

    Article  CAS  Google Scholar 

  3. P. Khorshid et al., Chin. Phys. Lett. 18, 393 (2001)

    Article  Google Scholar 

  4. G. Fiksel et al., Phys. Rev. Lett. 75, 3866 (1995)

    Article  CAS  PubMed  Google Scholar 

  5. P.E. Phillips et al., J. Nucl. Mater. 145–147, 807 (1987)

    Article  Google Scholar 

  6. K.H. Burrell, Phys. Plasma 6, 4418 (1999)

    Article  CAS  Google Scholar 

  7. A.V. Nedospasov, Phys. Fluids 5, 3191 (1993)

    Article  CAS  Google Scholar 

  8. J.C. van den Berg (ed.), Wavelets in physics (Cambridge University Press, Cambridge, 1999)

    Google Scholar 

  9. M. Ghoranneviss et al., Phys. Scr. 82(3), 035502 (2010)

    Article  Google Scholar 

  10. M.R. Ghanbari et al., Phys. Scr. 83, 055501 (2011)

    Article  Google Scholar 

  11. A. Salar Elahi et al., Fusion Eng. Des. 86, 442–445 (2011)

    Article  Google Scholar 

  12. M. Ghoranneviss et al., J. Fusion Energy 29(3), 232–236 (2010)

    Article  CAS  Google Scholar 

  13. A. Salar Elahi et al., IEEE Trans. Plasma Sci. 40(3), 892–897 (2012)

    Article  Google Scholar 

  14. A. Salar Elahi et al., Radiat. Eff. Defects Solids 168(9), 636–641 (2013)

    Article  Google Scholar 

  15. C.H. Ritz et al., Rev. Sci. Instrument 59, 1739 (1988)

    Article  CAS  Google Scholar 

  16. A. Salar Elahi et al., J X-ray Sci Technol 22, 777–783 (2014)

    Google Scholar 

  17. A. Salar Elahi et al., IEEE Trans. Plasma Sci. 42(10), 3397–3402 (2014)

    Article  Google Scholar 

  18. A. Salar Elahi et al., IEEE Trans. Plasma Sci. 42(11), 3555–3559 (2014)

    Article  Google Scholar 

  19. A. Salar Elahi et al., Radiat. Eff. Defects Solids 169(8), 669–678 (2014)

    Article  Google Scholar 

  20. A. Salar Elahi et al., J. Plasma Phys. (2014). doi:10.1017/S0022377814000336

  21. A. Salar Elahi et al., J. Fusion Energy 33(1), 1–7 (2014)

    Article  CAS  Google Scholar 

  22. A. Salar Elahi et al., J. Fusion Energy 33(3), 242–251 (2014)

    Article  CAS  Google Scholar 

  23. A. Salar Elahi et al., J. Fusion Energy 33(3), 264–268 (2014)

    Article  CAS  Google Scholar 

  24. A. Salar Elahi et al., J. Fusion Energy 33(2), 158–165 (2014)

    Article  Google Scholar 

  25. A. Salar Elahi et al., J. Plasma Physics 80(1), 9–25 (2014)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Mikaili Agah.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikaili Agah, K., Ghoranneviss, M. & Elahi, A.S. RETRACTED ARTICLE: NaI Scintillator Application for Detection of X-ray Due to Hotfoot Electrons in Tokamak. J Inorg Organomet Polym 25, 848–854 (2015). https://doi.org/10.1007/s10904-015-0168-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-015-0168-7

Keywords

Navigation