Skip to main content
Log in

CO Adsorption Characteristics on Impurity Substituted In2O3 Nanostructures: A Density Functional Theory Investigation

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The structural stability, adsorption characteristics of CO on In2O3 base material and electronic properties of pure, N and Ga substituted cubic In2O3 nanostructures are optimized and simulated successfully using density functional theory with B3LYP/LanL2DZ basis set. The structural stabilities of In2O3 nanostructures are discussed using calculated energy. The electronic properties of In2O3 nanostructures are studied in terms of HOMO–LUMO gap, electron affinity and ionization potential. Point symmetry and dipole moment of In2O3 nanostructures are also reported. Adsorption characteristics of CO can be fine-tuned with proper substitution impurities such as N and Ga on In2O3 nanostructure. The adsorption characteristics of CO are explored with density of states and Mulliken population analysis. Moreover, nitrogen substituted In2O3 nanostructure enhances CO adsorption characteristics on In2O3 nanostructures. The proper adsorption sites of CO on cubic In2O3 nanostructures are identified and reported. The results of the present work give a clear vision on the adsorption characteristics of CO on In2O3 nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. S.P. Harvey, T.O. Mason, Y. Gassenbauer, R. Schafranek, A. Klein, J. Phys. D Appl. Phys. 39, 3959 (2006)

    Article  CAS  Google Scholar 

  2. A. Murali, A. Barve, V.J. Leppert, S.H. Risbud, I.M. Kennedy, H.W. Lee, Nano Lett. 1, 287 (2001)

    Article  CAS  Google Scholar 

  3. D.H. Zhang, C. Li, S. Han, X.L. Liu, T. Tang, W. Jin, C.W. Zhou, Appl. Phys. Lett. 82, 112 (2003)

    Article  CAS  Google Scholar 

  4. D.W. Chu, Y.P. Zeng, D.L. Jiang, J.Q. Xu, Nanotechnology 18, 435605 (2007)

    Article  Google Scholar 

  5. M. Epifani, E. Comini, J. Arbiol, R. Diaz, N. Sergent, T. Pagnier, P. Siciliano, G. Faglia, J.R. Morante, Sens. Actuators, B 130, 483 (2008)

    Article  CAS  Google Scholar 

  6. G. Neri, A. Bonavita, G. Micali, G. Rizzo, E. Callone, G. Carturan, Sens. Actuators, B 132, 224 (2008)

    Article  CAS  Google Scholar 

  7. J.Q. Xu, X.H. Wang, J.N. Shen, Sens. Actuators, B 115, 642 (2006)

    Article  CAS  Google Scholar 

  8. J.Q. Xu, X.H. Wang, G.Q. Wang, J.J. Han, Y.A. Sun, Electrochem. Solid State Lett. 9, 103 (2006)

    Article  Google Scholar 

  9. C.H. Liang, G.W. Meng, Y. Lei, F. Phillipp, L.D. Zhang, Adv. Mater. 13, 1330 (2001)

    Article  CAS  Google Scholar 

  10. P. Guha, S. Kar, S. Chaudhuri, Appl. Phys. Lett. 85, 3851 (2004)

    Article  CAS  Google Scholar 

  11. Q.S. Liu, W.G. Lu, A.H. Ma, J.K. Tang, J. Lin, J.Y. Fang, J. Am. Chem. Soc. 127, 5276 (2005)

    Article  CAS  Google Scholar 

  12. Y.G. Yan, Y. Zhang, H.B. Zeng, L.D. Zhang, Cryst. Growth Des. 7, 940 (2007)

    Article  CAS  Google Scholar 

  13. C. Li, D.H. Zhang, S. Han, X.L. Liu, T. Tang, C.W. Zhou, Adv. Mater. 15, 143 (2003)

    Article  CAS  Google Scholar 

  14. N. Yamazoe, Sens. Actuators, B 108, 2 (2005)

    Article  CAS  Google Scholar 

  15. M. Fleischer, H. Meixner, Sens. Actuators, B 52, 179 (1998)

    Article  CAS  Google Scholar 

  16. M. Ivanovskaya, A. Gurlo, P. Bogdanov, Sens. Actuators, B 77, 264 (2001)

    Article  CAS  Google Scholar 

  17. V. Golovanova, M.A. Maki-Jaskari, T.T. Rantalab, G. Korotcenkovc, V. Brinzari, A. Cornet, J. Moranted, Sens. Actuators, B 106, 563 (2005)

    Article  Google Scholar 

  18. J. Cao, H. Dou, H. Zhang, H. Mei, S. Liu, T. Fei, R. Wang, L. Wang, T. Zhang, Sens. Actuators, B 198, 180 (2014)

    Article  CAS  Google Scholar 

  19. G. Korotcenkov, I. Boris, A. Cornet, J. Rodriguez, A. Cirera, V. Golovanov, Y. Lychkovsky, G. Karkotsky, Sens. Actuators, B 120, 657 (2007)

    Article  CAS  Google Scholar 

  20. X. Wang, M. Zhang, J. Liu, T. Luo, Y. Qian, Sens. Actuators, B 137, 103 (2009)

    Article  Google Scholar 

  21. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Bar-one, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J. Sonnen-berg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A.J. Montgomery, J. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N.J. Millam, M. Klene, J. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gmperts, R. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian, Inc., Wallingford, CT (2009)

  22. A.D. Becke, Phys. Rev. A 38, 3098 (1988)

    Article  CAS  Google Scholar 

  23. A.D. Becke, J. Chem. Phys. 98, 5648 (1993)

    Article  CAS  Google Scholar 

  24. M.N. O’Boyle, A.L. Tenderholt, K.M. Langner, J. Comp. Chem. 29, 839 (2008)

    Article  Google Scholar 

  25. S. Sriram, R. Chandiramouli, B.G. Jeyaprakash, Struct. Chem. 25, 389 (2014)

    Article  CAS  Google Scholar 

  26. S. Sriram, R. Chandiramouli, D. Balamurugan, A. Thayumanvan, Eur. Phys. J. Appl. Phys. 62, 30101 (2013)

    Article  Google Scholar 

  27. S. Klaus, The Energy Gap of Clusters Nanoparticles and Quantum Dots. Handbook of Thin Films Materials, Nanomaterials and Magnetic Thin Films, vol. 5 (Academic Press, San Diego, 2002)

    Google Scholar 

  28. V. Nagarajan, R. Chandiramouli, Alex Eng J 53, 437 (2014)

    Article  Google Scholar 

  29. V. Nagarajan, R. Chandiramouli, Int. J. ChemTech Res 6, 2240 (2014)

    CAS  Google Scholar 

  30. G. Korotcenkov, I. Boris, V. Brinzari, V. Golovanov, Y. Lychkovsky, G. Karkotsky, A. Cornet, E. Rossinyol, J. Rodrigue, A. Cirera, Sens Actuators B 103, 13 (2004)

    Article  CAS  Google Scholar 

  31. K.I. Choi, H.R. Kim, J.H. Lee, Sens. Actuators, B 138, 497 (2009)

    Article  CAS  Google Scholar 

  32. V. Nagarajan, R. Chandiramouli, Struct. Chem. (2014). doi:10.1007/s11224-014-0451-1

    Google Scholar 

  33. V. Nagarajan, R. Chandiramouli, Ceram Int 40, 16147–16158 (2014)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Chandiramouli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagarajan, V., Chandiramouli, R. CO Adsorption Characteristics on Impurity Substituted In2O3 Nanostructures: A Density Functional Theory Investigation. J Inorg Organomet Polym 25, 837–847 (2015). https://doi.org/10.1007/s10904-015-0167-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-015-0167-8

Keywords

Navigation