Skip to main content
Log in

Three Single Stranded Helical Coordination Polymers of a Macrocyclic Metalloligand and Mg2+, Zr4+ and Pb2+ Nodes

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Three new coordination polymers, {[Mg(NiL1)(H2O)3]·CH3CH2OH·2H2O} n (1), {[Zr2(NiL1)2(OH)4(H2O)2]·8H2O} n (2) and {[Pb(NiL1)(H2O)2]·3H2O} n (3), were prepared from a macrocyclic metalloligand NiL1. H2L1 denotes 1,4-dihydro-2,3-dioxo-5,6:- 9,10:13,14-tribenzo[1,4,8,11]tetraazacyclotetradeca-7,11-diene-7,12-dicarboxylate. Single crystal X-ray diffraction studies revealed that 1, 2 and 3 have infinite single stranded helical structures. In each of the three compounds, NiL1 plays the role of the bridging ligand by chelating one node via two oxamido carbonyls and binding to another through a carboxylate oxygen atom. 1D helical coordination polymers of macrocyclic metalloligands and those of Mg2+, Zr4+ and Pb2+ nodes are all not common. The generation of the three complexes manifests further that NiL1 is a bridging ligand unprecedentedly powerful in directing the formation of single stranded helical coordination polymers. It is the combination of multiple features of NiL1 that are responsible for its high powerfulness of inducing these helical structures. The outcome implies that combining multiple features surporting the formation of such helices into one ligand should be an effective strategy for the design and selection of bridging ligands powerful for the production of such structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. L. Han, M.C. Hong, Inorg. Chem. Commun. 8, 406–419 (2005)

    Article  CAS  Google Scholar 

  2. X.D. Zheng, T.B. Lu, CrystEngComm 12, 324–336 (2010)

    Article  CAS  Google Scholar 

  3. W.L. Leong, J.J. Vittal, Chem. Rev. 111, 688–764 (2011)

    Article  CAS  Google Scholar 

  4. X.Z. Li, P.P. Hao, D. Wang, L.N. Zhu, CrystEngComm 15, 2800–2803 (2013)

    Article  CAS  Google Scholar 

  5. G. Yuan, C. Zhu, Y. Liu, W. Xuan, Y. Cui, J. Am, Chem. Soc. 131, 10452–10460 (2009)

    Article  CAS  Google Scholar 

  6. J.P. Zhang, X.L. Qi, C.T. He, Y. Wang, X.M. Chen, Chem. Commun. 47, 4156–4158 (2011)

    Article  CAS  Google Scholar 

  7. K.H. Park, T.H. Noh, Y.B. Shim, O.S. Jung, Chem. Commun. 49, 4000–4002 (2013)

    Article  CAS  Google Scholar 

  8. J. Heine, M. Hołyńska, M. Reuter, B. Haas, S. Chatterjee, M. Koch, K.I. Gries, K. Volz, S. Dehnen, Cryst. Growth Des. 13, 1252–1259 (2013)

    Article  CAS  Google Scholar 

  9. Y. Shinozaki, G. Richards, K. Ogawa, A. Yamano, K. Ohara, K. Yamaguchi, S. Kawano, K. Tanaka, Y. Araki, T. Wada, J. Otsuki, J. Am, Chem. Soc. 135, 5262–5265 (2013)

    Article  CAS  Google Scholar 

  10. A. Roth, D. Koth, M. Gottschaldt, W. Plass, Cryst. Growth Des. 6, 2655–2657 (2006)

    Article  CAS  Google Scholar 

  11. E. Yashima, K. Maeda, H. Iida, Y. Furusho, K. Nagai, Chem. Rev. 109, 6102–6211 (2009)

    Article  CAS  Google Scholar 

  12. H.J. Kim, E. Lee, H.S. Park, M. Lee, J. Am, Chem. Soc. 129, 10994–10995 (2007)

    Article  CAS  Google Scholar 

  13. C. Wang, T. Zhang, W. Lin, Chem. Rev. 112, 1084–1104 (2012)

    Article  CAS  Google Scholar 

  14. X.Z. Li, M. Li, Z. Li, J.Z. Hou, X.C. Huang, D. Li, Angew. Chem. Int. Ed. 47, 6371–6374 (2008)

    Article  CAS  Google Scholar 

  15. R. Mondal, T. Basu, D. Sadhukhan, T. Chattopadhyay, M.k. Bhunia. Cryst. Growth Des. 9, 1095–1105 (2009)

    Article  CAS  Google Scholar 

  16. N.N. Adarsh, P. Dastidar, Chem. Soc. Rev. 41, 3039–3060 (2012)

    Article  CAS  Google Scholar 

  17. X.D. Chen, M. Dub, T.C.W. Mak, Chem. Commun. 35, 4417–4419 (2005)

    Article  Google Scholar 

  18. W.W. He, J. Yang, Y. Yang, Y.Y. Liu, J.F. Ma, Dalton Trans. 41, 9737–9747 (2012)

    Article  CAS  Google Scholar 

  19. X.Z. Li, P.P. Hao, D. Wang, W.Q. Zhang, L.N. Zhu, CrystEngComm 14, 366–369 (2012)

    Article  CAS  Google Scholar 

  20. E. Jeanneau, N. Audebrand, D. Louër, Chem. Mater. 14, 1187–1194 (2002)

    Article  CAS  Google Scholar 

  21. Y.L. Fu, J.L. Ren, S.W. Ng, Acta Cryst. Sec. E 61, M491–M493 (2005)

    Article  CAS  Google Scholar 

  22. G.M. Sheldrick, SADABS, Program for Empirical Absorption Correction of Area Detector Data. University of Göttingen, Germany (1996)

  23. G.M. Sheldrick, SHELXS-97 and SHELXL-97 (Software for Crystal Structure Analysis. Siemens Analytical X-ray Instruments Inc., Madision, 1997)

    Google Scholar 

  24. X.Z. Li, L.N. Zhu, D.Z. Liao, Inorg. Chim. Acta 361, 1469–1478 (2008)

    Article  CAS  Google Scholar 

  25. D. Wang, C.J. Niu, X.Z. Li, L.N. Zhu, P.P. Hao, Inorg. Chim. Acta 391, 20–27 (2012)

    Article  CAS  Google Scholar 

  26. X.M. Shi, X.Z. Li, B.B. Ding, L.N. Zhu, Z. Anorg. Allg. Chem. 639, 592–599 (2013)

    Article  CAS  Google Scholar 

  27. M.B. Duriska, S.M. Neville, J. Lu, S.S. Iremonger, J.F. Boas, C.J. Kepert, S.R. Batten, Angew. Chem. 121, 9081–9084 (2009)

    Article  Google Scholar 

  28. E.C. Constable, G. Zhang, C.E. Housecroft, J.A. Zampese, CrystEngComm 13, 6864–6870 (2011)

    Article  CAS  Google Scholar 

  29. X.Z. Li, J.H. He, B.L. Liu, D.Z. Liao, Inorg. Chem. Commun. 7, 420–422 (2004)

    Article  CAS  Google Scholar 

  30. C. Janiak, J (Chem. Soc, Dalton Trans., 2000), pp. 3885–3896

    Google Scholar 

  31. E.Q. Gao, J.K. Tang, D.Z. Liao, Z.H. Jiang, S.P. Yan, G.L. Wang, Helv. Chim. Acta 84, 908–917 (2001)

    Article  CAS  Google Scholar 

  32. A.V.R. Warrier, R.S. Narayanan, Spectrochim. Acta 23A, 1061–1067 (1967)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science foundation of China (Grant No. 21371130) and the State Key laboratory of Crystal Material (Shandong University) (Grant No. KF1302). Submitted to Journal of Inorganic and Organometallic Polymers and Materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Zeng Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, HL., Wu, SB., Shi, XM. et al. Three Single Stranded Helical Coordination Polymers of a Macrocyclic Metalloligand and Mg2+, Zr4+ and Pb2+ Nodes. J Inorg Organomet Polym 25, 730–738 (2015). https://doi.org/10.1007/s10904-014-0151-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-014-0151-8

Keywords

Navigation