Skip to main content
Log in

Microwave Assisted Synthesis and Characterization of CoxZn1−xCr0.5Fe0.5O4 Nanoparticles

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Nanoparticles of CoxZn1−xFeCrO4 (x = 0.0–1.0) ferrites have been synthesized by the nitrate citrate microwave assisted route. The structural and magnetic properties were investigated by means of X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, vibrating sample magnetometer. X-ray powder diffraction patterns confirm that the samples possess single phase cubic spinel structure. It was found that by increasing the amount of cobalt loading, the crystallite size increases [20–55 nm with increasing the Co content (x)]. The introduction of Cr3+ ions at octahedral B sites results in the dilution of the magnetization at the B site, which will reduce the saturation magnetization. In the opposite way, replacement of non-magnetic Zn2+ ions with ferromagnetic Co2+ ones increases the saturation magnetization of the samples further.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. R. Valenzuela, Magnetic Ceramics (Cambridge University Press, Cambridge, 2005), pp. 50–64

    Google Scholar 

  2. D.S. Mathew, R.-S. Juang, Chem. Eng. J. 129, 51 (2007)

    Article  CAS  Google Scholar 

  3. H.K. Harlod, C.K. Mayfir, Adv. Catal. 33, 159 (1985)

    Google Scholar 

  4. R.R. Rajaram, A. Serman, J. Chem. Soc. Faraday Trans. 181, 2577 (1985)

    Article  Google Scholar 

  5. M.P. Horvath, Microwave application of soft ferrite. J. Magn. Magn. Mater. 215–216, 171 (2000)

    Article  Google Scholar 

  6. M.A. Gabal, Y.M. Al Angari, Mater. Chem. Phys. 115, 578 (2009)

    Article  CAS  Google Scholar 

  7. H. Kavas, A. Baykal, M.S. Toprak, Y. Köseoğlu, M. Sertkol, B. Aktaş, J. Alloy. Compd. 479, 49 (2009)

    Article  CAS  Google Scholar 

  8. M.U. Rana, M.-U. Islam, T. Abbas, Mater. Chem. Phys. 65, 345 (2000)

    Article  CAS  Google Scholar 

  9. H.N. Ok, Y.K. Kim, Phys. Rev. B 36, 5120 (1987)

    Article  CAS  Google Scholar 

  10. I. Sharifi, H. Shokrollahi, J. Magn. Magn. Mater. 324, 2397 (2012)

    Article  CAS  Google Scholar 

  11. N. Okasha, Mater. Chem. Phys. 84, 63 (2004)

    Article  CAS  Google Scholar 

  12. S.A. Saafan, S.T. Assar, B.M. Moharram, M.K. El Nimr, J. Magn. Magn. Mater. 322, 628 (2010)

    Article  CAS  Google Scholar 

  13. J.G. Lee, J.Y. Park, C.S. Kim, J. Mater. Sci. 33, 3965 (1998)

    Article  CAS  Google Scholar 

  14. M.A. Gabal, Y.M. Al Angari, F.A. Al-Agel, J. Mol. Str. 1035, 341 (2013)

    Article  CAS  Google Scholar 

  15. R.K. Sharma, O. Suwalka, N. Lakshmi, K. Venugopalan, A. Banerjee, P.A. Joy, Mater. Lett. 59, 3402 (2005)

    Article  CAS  Google Scholar 

  16. W. Bayoumi, J. Mater. Sci. 42, 8254 (2007)

    Article  CAS  Google Scholar 

  17. S.T. Alone, E.S. Shirsath, R.H. Kadam, K.M. Jadhav, J Alloys Compd 509, 5055 (2011)

    Article  CAS  Google Scholar 

  18. B. Rajesh Babu, M.S.R. Prasad, K.V. Ramesh, Y. Purushotham, Mater Chem Phys (2014). doi:10.1016/j.matchemphys.2014.08.019

  19. A.I. Borhan, V. Hulea, A.R. Iordan, M.N. Palamaru, Polyhedron 70, 110 (2014)

    Article  CAS  Google Scholar 

  20. P.N. Vasambekar, C.B. Kolekar, A.S. Vaingankar, Mat. Chem. Phys. 60, 282 (1999)

    Article  CAS  Google Scholar 

  21. A.M. El-Sayed, Ceram. Int. 28, 651 (2002)

    Article  CAS  Google Scholar 

  22. R.D. Waldron, Phys. Rev. 99, 1727 (1955)

    Article  CAS  Google Scholar 

  23. Y. Köseoğlu, A. Baykal, M.S. Toprak, F. Gözüak, A.C. Basaran, B. Aktas, J. Alloy. Compd. 462, 209 (2008)

    Article  Google Scholar 

  24. A. Baykal, N. Kasapoğlu, Y. Köseoğlu, M.S. Toprak, H. Bayrakdar, J. Alloy. Compd. 464, 514 (2008)

    Article  CAS  Google Scholar 

  25. T. Wejrzanowski, R. Pielaszek, A. Opalinska, H. Matysiak, W. Łojkowski, K.J. Kurzydłowski, Appl. Surf. Sci. 253, 204 (2006)

    Article  CAS  Google Scholar 

  26. S. Güner, S. Esir, A. Baykal, A. Demir, Y. Bakis, Superlattices Microstr. 74, 184 (2014)

    Article  Google Scholar 

  27. R.D. Shannon, Acta Crystallogr. A 32, 751 (1976)

    Article  Google Scholar 

  28. A.K.M. Akther Hossain, M. Seki, T. Kawai, H. Tabata, J.Appl.Phys. 96, 1273 (2004)

    Article  CAS  Google Scholar 

  29. G. Vaidyanathan, S. Sendhilnathan, Phys. B 403, 2157 (2008)

    Article  CAS  Google Scholar 

  30. G. Gnanaprakash, J. Philip, B. Raj, Mater. Lett. 61, 4545 (2007)

    Article  CAS  Google Scholar 

  31. A. Manikandan, L.J. Kennedy, M. Bououdina, J.J. Vijaya, J. Mag. Magn. Mater. 349, 249 (2014)

    Article  CAS  Google Scholar 

  32. A. Manikandan, J.J. Vijaya, M. Sundararajan, C. Meganathan, L.J. Kennedy, M. Bououdina, Superlattices Microstr. 64, 118 (2013)

    Article  CAS  Google Scholar 

  33. A. Navrotsky, O.J. Kleppa, J. Inorg. Nucl. Chem. 30, 479 (1968)

    Article  CAS  Google Scholar 

  34. H. Mohseni, H. Shokrollahi, I. Sharifi, K. Gheisari, J. Magn. Magn. Mater. 324, 3227 (2012)

    Article  Google Scholar 

  35. F.N. Bradley, Materials for Magnetic Functions (Hayden, New York, 1971), pp. 78–87

    Google Scholar 

  36. F.Y. Pei, Jpn. J. Appl. Phys. 46, 7314 (2007)

    Article  Google Scholar 

  37. L. Zhao, W. Xu, H. Yang, L. Yu, Curr. Appl. Phys. 8, 36 (2008)

    Article  CAS  Google Scholar 

  38. K.S. Lohar, A.M. Pachpinde, M.M. Langade, R.H. Kadam, S.E. Shirsath, J. Alloy. Compd. 604, 204 (2014)

    Article  CAS  Google Scholar 

  39. H. Sozeri, Z. Durmus, A. Baykal, Mater. Res. Bull. 47, 2442 (2012)

    Article  CAS  Google Scholar 

  40. G.C. Allen, J.A. Jutson, P.A. Tempest, J. Nucl. Mater. 158, 96 (1988)

    Article  CAS  Google Scholar 

  41. K.G. Kornev, D. Halverson, G. Korneva, Y. Gogotsi, G. Friedman, Appl. Phys. Lett. 92, 233 (2008)

    Article  Google Scholar 

  42. A. Manikandan, L.J. Kennedy, M. Bououdina, J.J. Vijaya, Magn. Magn. Mater. 349, 249 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Fatih University under BAP Grant No.: P50021301-Y (3146), and in part by Swedish Research Council (VR-SRL 2013-6780).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Amir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amir, M., Baykal, A., Sertkol, M. et al. Microwave Assisted Synthesis and Characterization of CoxZn1−xCr0.5Fe0.5O4 Nanoparticles. J Inorg Organomet Polym 25, 619–626 (2015). https://doi.org/10.1007/s10904-014-0119-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-014-0119-8

Keywords

Navigation