Skip to main content
Log in

Photoluminescence Studies and Core–Shell Model Approach for Rare Earthdoped CdWO4 Nano Phosphor

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The present paper reports synthesis and photoluminescence studies of Cadmium tungstate (CdWO4) and Cerium doped CdWO4. The phosphor samples were synthesized by low cost and low temperature hydrothermal method. The received materials are characterized by XRD, FTIR, TEM and photoluminescence (PL) studies are reported. XRD pattern reveals that the CdWO4 has monoclinic wolframite structure and the shift toward higher angle of reflection peaks suggests that the cell parameters of as-synthesized phosphor could continuously decreases and also crystallite size decreases when the Ce concentration increases. The FTIR spectrum of Cerium doped CdWO4 exhibits intrinsic bending (Cd-O) and stretching vibrations (W-O). When the pH is varied from 4 to 8 the formation of nano spheres (4 pH) nano rods (6 pH) and agglomeration as well as nano tubes (8 pH) are observed which are confirmed from TEM studies. This may be due to that formation of nano material and also the change in nature of aqueous solution from acidic to basic. When the pH changed from acidic to basic while preparing the materials the observed PL emission in the synthesized phosphor the PL intensity increases. From PL studies it suggests that more radiative traps are responsible in basic medium when compare to acidic solution and 7 nm shift in PL emission spectra observed (blue to violet region) may be due the formation of nano phosphor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S.J. Chen, J.H. Zhou, X.T. Chen, J. Li, L.-H. Li, J.-M. Hong, Z.L. Xue, X.-Z. You, Chem. Phys. Lett. 375, 185 (2003)

    Article  CAS  Google Scholar 

  2. S. Kwan, F. Kim, J. Akana, Chem. Commun. 447 (2001)

  3. B. Liu, S.-H. Yu, F. Zhang, L.J. Li, Q. Zhang, L. Ren, K. Jiang, J. Phys. Chem. B 108, 2788 (2004)

    Article  CAS  Google Scholar 

  4. X.L. Hu, Y. Zhu, J. Langmuir 20, 1521 (2004)

    Article  CAS  Google Scholar 

  5. C.L. Melcher, R.A. Manentem, J.S. Schweitzer, IEEE Trans. Nucl. Sci. 36, 1188 (1989)

    Article  CAS  Google Scholar 

  6. C.L. Melcher, Priv. Commun. 75, 75 (1994)

    Google Scholar 

  7. D. Brown, R.H. Olsher, Y. Eisen, J.F. Odriguez, Nucl. Instrum. Methods Phys. Res. A 373, 139 (1996)

    Article  CAS  Google Scholar 

  8. C.M. Bartle, R.C. Haight, Nucl. Instrum. Methods Phys. Res. A 422, 54 (1999)

    Article  CAS  Google Scholar 

  9. V. Ryzhikov, L. Nagornaya, V. Volkov, V. Chernikov, O. Zelenskaya, Nucl. Instrum. Methods Phys. Res. A 486, 156 (2002)

    Article  CAS  Google Scholar 

  10. H. Lotem, Z. Burshtein, Opt. Lett. 12 (1987)

  11. C.D. Greskovich, D. Cusano, D. Hoffman, R.J. Riedner, Am. Ceram. Soc. Bull. 71, 1120 (1992)

    CAS  Google Scholar 

  12. M. Hojamberdiev, G. Zhu, Y. Xu, Mater. Res. Bull. 45, 1934–1940 (2010)

    Article  CAS  Google Scholar 

  13. J. Wang, Y. Xu, M. Hojamberdiev, J. Peng, G. Zhu, Mater. Sci. Eng., B 156, 42–47 (2009)

    Article  CAS  Google Scholar 

  14. H.-W. Liao, Y.-F. Wang, X.-M. Liu, Y.-D. Li, Y.-T. Qian, Chem. Mater. 12 (2000)

  15. M. Hojamberdiev, R. Kanakala, O. Ruzimuradov, Y. Yan, G. Zhu, Y. Xu, Opt. Mater. 34, 1954 (2012)

    Article  CAS  Google Scholar 

  16. M.L. DosSantos, R.C. Lima, C.S. Riccardi, R.L. Tranquilin, P.R. Bueno, J.A. Varela, E. Longo, Mater. Leeters 62, 4509 (2008)

    Article  CAS  Google Scholar 

  17. M. Zawadzksi, J. Alloys Compd. 451, 595 (2008)

    Article  Google Scholar 

  18. Y. Ma, L. Qi, J. Colloid Interface Sci. 335, 151 (2009)

    Article  Google Scholar 

  19. K. Polak, M. Niki, K. Nitsch, M. Kobayashi, M. Ishii, Y. Usuki, J. Jarolimerk, J. Lumin. 781 (1997)

  20. O.V. Rzhevskaya, D.A. Spasskiı, V.N. Kolobanov, V.V. Mikhaılin, L.L. Nagornaya, I.A. Tupitsina, B.I. Zadneprovskiı, Opt. Spectrosc. 104 (2008)

  21. Y.A. Hizhnyi, S.G. Nedilko, T.N. Nikolaenko, Nucl. Instrum. Methods Phys. Res. A 537, 36 (2005)

    Article  CAS  Google Scholar 

  22. Y.C. Kong, D.P. Yu, B. Zhang, W. Fang, S.Q. Feng, Appl. Phys. Lett. 78, 407 (2001)

    Article  CAS  Google Scholar 

  23. R. Chen, G.Z. Xing, J. Gao, Z. Zhang, T. Wu, H.D. Sun, Appl. Phy Lett. 95 (2009)

  24. C.S. Lim, Mater. Chem. Phys. 131, 714 (2012)

    Article  CAS  Google Scholar 

  25. D. Son, D.-R. Jung, J. Kim, T. Moon, C. Kim, B. Park, Appl. Phys. Lett. 90 (2007)

  26. B. Gao, H. Fan, X. Zhang, S. Afr. J. Chem. 65, 125 (2012)

    CAS  Google Scholar 

  27. D. Modi, M. Srinivas, D. Tawde, K.V.R. Murthy, V. Verma, N. Patel, J. Exp. Nanosci. (2014). doi:10.1080/17458080.2014.899714

    Google Scholar 

Download references

Acknowledgments

Author very thank full to UGC-DAE, Consortium for Scientific Research, Indore for XRD measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhaval Modi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srinivas, M., Modi, D., Patel, N. et al. Photoluminescence Studies and Core–Shell Model Approach for Rare Earthdoped CdWO4 Nano Phosphor. J Inorg Organomet Polym 24, 988–993 (2014). https://doi.org/10.1007/s10904-014-0065-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-014-0065-5

Keywords

Navigation