Low-Power Upconversion in Poly(Mannitol-Sebacate) Networks with Tethered Diphenylanthracene and Palladium Porphyrin


Efforts to fabricate low-power upconverting solid-state systems have rapidly increased in the past decade because of their possible application in several fields such as bio-imaging, drug delivery, solar harvesting or displays. The synthesis of upconverting cross-linked polyester rubbers with covalently tethered chromophores is presented here. Cross-linked films were prepared by reacting a poly(mannitol-sebacate) pre-polymer with 9,10-bis(4-hydroxymethylphenyl) anthracene (DPA-(CH2OH)2) and palladium mesoporphyrin IX. These chromophores served as emitters and sensitizers, respectively, and through a cascade of photophysical events, resulted in an anti-Stokes shifted emission. Indeed, blue emission (~440 nm) of these solid materials was detected upon excitation at 543 nm with a green laser and the power dependence of integrated upconverted intensity versus excitation was examined. The new materials display upconversion at power densities as low as 32 mW/cm2, and do not display phase de-mixing, which has been identified as an obstacle in rubbery blends comprising untethered chromophores.

Graphical Abstract

ToC Low-power upconverting cross-linked polyester with tethered chromophores was synthesized by polycondensation of poly(mannitol-sebacate) pre-polymers with 9,10-bis(4-hydroxymethylphenyl) anthracene and palladium mesoporphyrin IX. Upconverted blue fluorescence (440 nm) of these solid materials is detected upon excitation at 543 nm with a green laser and the power dependence of integrated upconverted intensity versus excitation is examined in this study.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    C. A. Parker, C. G. Hatchard. P. Chem. Soc. London, 386–387 (1962)

  2. 2.

    Y.C. Simon, C. Weder, J. Mater. Chem. 22, 20817–20830 (2012)

    CAS  Article  Google Scholar 

  3. 3.

    J.Z. Zhao, S.M. Ji, H.M. Guo, Rsc Adv. 1, 937–950 (2011)

    CAS  Article  Google Scholar 

  4. 4.

    C. Reinhard, R. Valiente, H.U. Gudel, J. Phys. Chem. B 106, 10051–10057 (2002)

    CAS  Article  Google Scholar 

  5. 5.

    M. Haase, H. Schafer, Angew. Chem. Int. Edit. 50, 5808–5829 (2011)

    CAS  Article  Google Scholar 

  6. 6.

    W.H. Wu, J.Z. Zhao, J.F. Sun, S. Guo, J. Org. Chem. 77, 5305–5312 (2012)

    CAS  Article  Google Scholar 

  7. 7.

    T.T. Zhao, X.Q. Shen, L. Li, Z.P. Guan, N.Y. Gao, P.Y. Yuan, S.Q. Yao, Q.H. Xu, G.Q. Xu, Nanoscale 4, 7712–7719 (2012)

    CAS  Article  Google Scholar 

  8. 8.

    C. Cepraga, T. Gallavardin, S. Marotte, P.H. Lanoe, J.C. Mulatier, F. Lerouge, S. Parola, M. Lindgren, P.L. Baldeck, J. Marvel, O. Maury, C. Monnereau, A. Favier, C. Andraud, Y. Leverrier, M.T. Charreyre, Polym. Chem. 4, 61–67 (2013)

    CAS  Article  Google Scholar 

  9. 9.

    J. Qian, D. Wang, F.H. Cai, Q.Q. Zhan, Y.L. Wang, S.L. He, Biomaterials 33, 4851–4860 (2012)

    CAS  Article  Google Scholar 

  10. 10.

    S. Baluschev, V. Yakutkin, T. Miteva, G. Wegner, T. Roberts, G. Nelles, A. Yasuda, S. Chernov, S. Aleshchenkov, A. Cheprakov, New J. Phys. 10, 013007 (2008)

    Article  Google Scholar 

  11. 11.

    S. Baluschev, T. Miteva, V. Yakutkin, G. Nelles, A. Yasuda, G. Wegner, Phys. Rev. Lett. 97, 143903 (2006)

    CAS  Article  Google Scholar 

  12. 12.

    M. Samoc, A. Samoc, B. Luther-Davies, Opt. Express 11, 1787–1792 (2003)

    CAS  Article  Google Scholar 

  13. 13.

    A. Monguzzi, J. Mezyk, F. Scotognella, R. Tubino, F. Meinardi, Phys. Rev. B 78(195112), 1–5 (2008)

    Google Scholar 

  14. 14.

    A. Monguzzi, R. Tubino, F. Meinardi, Phys. Rev. B 77, 155122-1-4 (2008)

    Google Scholar 

  15. 15.

    T.N. Singh-Rachford, R.R. Islangulov, F.N. Castellano, J. Phys. Chem. A 112, 3906–3910 (2008)

    CAS  Article  Google Scholar 

  16. 16.

    C. Wohnhaas, A. Turshatov, V. Mailander, S. Lorenz, S. Baluschev, T. Miteva, K. Landfester, Macromol. Biosci. 11, 772–778 (2011)

    CAS  Article  Google Scholar 

  17. 17.

    R.R. Islangulov, J. Lott, C. Weder, F.N. Castellano, J. Am. Chem. Soc. 129, 12652–12653 (2007)

    CAS  Article  Google Scholar 

  18. 18.

    Y.C. Simon, C. Weder, Chimia 66, 878 (2012)

    Article  Google Scholar 

  19. 19.

    Y.C. Simon, S. Bai, M.K. Sing, H. Dietsch, M. Achermann, C. Weder, Macromol. Rapid Commun. 33, 498–502 (2012)

    CAS  Article  Google Scholar 

  20. 20.

    S.H. Lee, J.R. Lott, Y.C. Simon, C. Weder, J. Mater. Chem. C 1, 5142–5148 (2013)

    CAS  Article  Google Scholar 

  21. 21.

    S. Baluschev, P.E. Keivanidis, G. Wegner, J. Jacob, A.C. Grimsdale, K. Mullen, T. Miteva, A. Yasuda, G. Nelles, Appl. Phys. Lett. 86, 1–3 (2005)

    Google Scholar 

  22. 22.

    S. Baluschev, J. Jacob, Y.S. Avlasevich, P.E. Keivanidis, T. Miteva, A. Yasuda, G. Nelles, A.C. Grimsdale, K. Mullen, G. Wegner, ChemPhysChem 6, 1250–1253 (2005)

    CAS  Article  Google Scholar 

  23. 23.

    P.C. Boutin, K.P. Ghiggino, T.L. Kelly, R.P. Steer, J. Phys. Chem. Lett. 4, 4113–4118 (2013)

    CAS  Article  Google Scholar 

  24. 24.

    C.A. Sundback, J.Y. Shyu, Y.D. Wang, W.C. Faquin, R.S. Langer, J.P. Vacanti, T.A. Hadlock, Biomaterials 26, 5454–5464 (2005)

    CAS  Article  Google Scholar 

  25. 25.

    Z.J. Sun, C. Chen, M.Z. Sun, C.H. Ai, X.L. Lu, Y.F. Zheng, B.F. Yang, D.L. Dong, Biomaterials 30, 5209–5214 (2009)

    CAS  Article  Google Scholar 

  26. 26.

    A. Mahdavi, L. Ferreira, C. Sundback, J.W. Nichol, E.P. Chan, D.J.D. Carter, C.J. Bettinger, S. Patanavanich, L. Chignozha, E. Ben-Joseph, A. Galakatos, H. Pryor, I. Pomerantseva, P.T. Masiakos, W. Faquin, A. Zumbuehl, S. Hong, J. Borenstein, J. Vacanti, R. Langer, J.M. Karp, Proc. Natl. Acad. Sci. USA 105, 2307–2312 (2008)

    CAS  Article  Google Scholar 

  27. 27.

    A. Sonseca, S. Camarero-Espinosa, L. Peponi, C. Weder, E.J. Foster, J.M. Kenny, E. Giménez, J. Polym. Sci. Part A. (2014). doi:10.1002/pola.27367

  28. 28.

    R. Vadrucci, C. Weder, Y.C. Simon, J. Mater. Chem. C 2, 2837–2841 (2014)

    CAS  Article  Google Scholar 

  29. 29.

    F.A. Lara, U. Lins, G.H. Bechara, P.L. Oliveira, J. Exp. Biol. 208, 3093–3101 (2005)

    CAS  Article  Google Scholar 

  30. 30.

    R. Maliger, P.J. Halley, J.J. Cooper-White, J. Appl. Polym. Sci. 127, 3980–3986 (2013)

    CAS  Article  Google Scholar 

  31. 31.

    S. H. Lee, M. A. Ayer, R. Vadrucci, C. Weder, Y. C. Simon, Polym. Chem. (2014)

  32. 32.

    T.W. Schmidt, Y.Y. Cheng, B. Fuckel, T. Khoury, R.G.C.R. Clady, M.J.Y. Tayebjee, N.J. Ekins-Daukes, M.J. Crossley, J. Phys. Chem. Lett. 1, 1795–1799 (2010)

    Article  Google Scholar 

  33. 33.

    R. R. Islangulov, T. N. Singh, J. Lott, C. Weder, F. N. Castellano. Abstr. Pap. Am. Chem. Soc. 235 (2008)

Download references


The authors are thankful for the financial support of the Swiss National Science Foundation (200021_13540/1 and 200020_152968), Spanish Ministry of Economy and Competitiveness (Project MAT2010/21494-C03) and the Adolphe Merkle Foundation. The authors thank Prof. Christoph Weder for his help and support.

Author information



Corresponding author

Correspondence to Yoan C. Simon.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lee, S., Sonseca, Á., Vadrucci, R. et al. Low-Power Upconversion in Poly(Mannitol-Sebacate) Networks with Tethered Diphenylanthracene and Palladium Porphyrin. J Inorg Organomet Polym 24, 898–903 (2014). https://doi.org/10.1007/s10904-014-0063-7

Download citation


  • Light upconversion
  • Triplet–triplet annihilation
  • Poly(mannitol-sebacate)s
  • Polycondensation
  • Upconverting elastomer