Skip to main content
Log in

First-Principles Investigation on Electronic Transport Properties of Tungsten Nitride Nanoribbon Based Molecular Device

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The electronic transport property of tungsten nitride nanoribbon-based molecular device is investigated using density functional theory. The study on electronic transport properties are discussed in terms of device density of states and transmission spectrum of the nanoribbon. The scattering region of the nanoribbon is placed between the electrodes. For different bias voltages, the transport properties are studied. The contribution due to various orbitals leads to the peak maximum in device density of states. The transmission spectrum and transmission pathway provides insight to the transmission of charge under various bias conditions. The maximum peak in the transmission spectrum corresponds to the variation in transmission of charge with different bias voltage. The reported results will pave the way to improve the performance in the field of nanoelectronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. G.M. Matenoglou, L.E. Koutsokeras, E. Lekka, E. Ch, G. Abadias, C. Kosmidis, G.A. Evangelakis, P. Patsalas, Surf. Coat. Technol. 204, 911 (2009)

    Article  CAS  Google Scholar 

  2. F. Rovere, D. Music, S. Ershov, M. Baben, H.G. Fuss, P.H. Mayrhofer, J.M. Schneider, J. Phys. D 43(035302), 1 (2010)

    Google Scholar 

  3. L.E. Koutsokeras, N. Hastas, S. Kassavetis, O. Valassiades, C. Charitidis, S. Logothetidis, P. Patsalas, Surf. Coat. Technol. 204, 2038 (2010)

    Article  CAS  Google Scholar 

  4. S.A. Barnett, A. Madan, Scr. Mater. 50, 739 (2004)

    Article  CAS  Google Scholar 

  5. V.R. Parameswaran, J.P. Immarigeon, D. Nagy, Surf. Coat. Technol. 52, 251 (1992)

    Article  CAS  Google Scholar 

  6. S. Veprek, M.J.G. Veprek Heijman, Surf. Coat. Technol. 202, 5063 (2008)

    Article  CAS  Google Scholar 

  7. J. Felba, K.P. Friedel, P. Krull, I.L. Pobol, H. Wohlfahrt, Vacuum 62, 171 (2001)

    Article  CAS  Google Scholar 

  8. Y. Gotoh, M. Nagao, T. Ura, H. Tsuji, J. Ishikawa, Nucl. Instrum. Methods Phys. Res. Sect. B 148, 925 (1999)

    Article  CAS  Google Scholar 

  9. P. Hones, R. Consiglio, N. Randall, F. Le, Surf. Coat. Technol. 125, 179 (2000)

    Article  CAS  Google Scholar 

  10. S. Guruvenket, G. Mohan Rao, Mater. Sci. Eng. B 106, 172 (2004)

    Article  Google Scholar 

  11. G. Soto, W. De la Cruz, F.F. Castillon, J.A. Dıaz, R. Machorro, M.H. Farıas, Appl. Surf. Sci. 214, 58 (2003)

    Article  CAS  Google Scholar 

  12. O.J. Bchir, K.M. Green, M.S. Hlad, T.J. Anderson, B.C. Brooks, C.B. Wilder, D.H. Powell, L.M. White, J. Organomet. Chem. 684, 338 (2003)

    Article  CAS  Google Scholar 

  13. K.E. Elers, V. Saanila, W.M. Li, P.J. Soininen, J.T. Kostamo, S. Haukka, J. Juhanoja, W.F.A. Besling, Thin Solid Films 434, 94 (2003)

    Article  CAS  Google Scholar 

  14. T. Yamamoto, M. Kawate, H. Hasegawa, T. Suzuki, Surf. Coat. Technol. 193, 372 (2005)

    Article  CAS  Google Scholar 

  15. C. Meunier, C. Monteil, C. Savall, F. Palmino, J. Weber, R. Berjoan, J. Durand, Appl. Surf. Sci. 125, 313 (1998)

    Article  CAS  Google Scholar 

  16. V. Chakrapani, J. Thangala, M.K. Sunkara, Int. J. Hydrog. Energy 34, 9050 (2009)

    Article  CAS  Google Scholar 

  17. D. Chen, H. Wen, T. Li, L. Yin, B. Fan, H. Wang, R. Zhang, X. Li, H. Xu, H. Lu, D. Yang, J. Sun, L. Gao, J. Solid State Chem. 184, 455 (2011)

    Article  CAS  Google Scholar 

  18. J.M. Soler, E. Artacho, J.D. Gale, A. Garcıa, J. Junquer, P. Ordejon, D.S. Portal, J. Phys. 14, 2745 (2002)

    CAS  Google Scholar 

  19. J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Phys. Rev. B. 46, 6671 (1992)

    Article  CAS  Google Scholar 

  20. J.P. Perdew, B. Burke, Y. Wang, Phys. Rev. B. 54, 16533 (1996)

    Article  CAS  Google Scholar 

  21. J. Zhao, C. Yang, M. Wang, J. Ma, Phys. B 417, 70 (2013)

    Article  CAS  Google Scholar 

  22. I. Sharma, D.K.K. Randhawa, K.L. Singh, IOSR J. Electron. Commun. Eng. 1, 1 (2012)

    Article  CAS  Google Scholar 

  23. C. Fang, B. Cui, Y. Xu, G. Ji, D. Liu, S. Xie, Phys. Lett. A 375, 3618 (2011)

    Article  CAS  Google Scholar 

  24. P. Zhao, P.J. Wang, Z. Zhang, D.S. Liu, Phys. B 405, 446 (2010)

    Article  CAS  Google Scholar 

  25. R. Chandiramouli, S. Sriram, Superlattices Microstruct. 65, 22 (2014)

    Article  CAS  Google Scholar 

  26. R. Chandiramouli, S. Sriram, NANO 9, 1450020 (2014)

    Article  Google Scholar 

  27. Q.Y. Huaa, G. Da-Ren, L. Cheng-Bua, Chin. J. Chem. 24, 326 (2006)

    Article  Google Scholar 

  28. Y. Okuno, T. Ozaki, J. Phys. Chem. C 117, 100 (2013)

    Article  CAS  Google Scholar 

  29. R. Chandiramouli, S. Sriram, Mol. Phys. (2014). doi:10.1080/00268976.2013.875230

    Google Scholar 

  30. C.J. Xia, D.S. Liu, C.F. Fang, P. Zhao, Phys. E 42, 1763 (2010)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Chandiramouli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandiramouli, R., Sriram, S. First-Principles Investigation on Electronic Transport Properties of Tungsten Nitride Nanoribbon Based Molecular Device. J Inorg Organomet Polym 24, 737–744 (2014). https://doi.org/10.1007/s10904-014-0041-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-014-0041-0

Keywords

Navigation